首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
通过采用CFD计算软件,求解基于k-ε紊流模型的Navier-Stokes方程,建立轴流转桨式水轮机转轮部分的数值计算模型。对在不同的桨叶角度和各导叶开度下含轮缘间隙的轴流转桨式水轮机内部流动特性进行全面系统的数值计算,阐述了不同工况下流域内的流场分布和轮缘间隙处的流线分布,并分析了轮缘间隙对水轮机内部流动特性的影响。为进一步提高轴流转桨式水轮机性能和电站的稳定运行提供依据。  相似文献   

2.
水轮机尾水管涡带诱发的转轮横向激振力计算   总被引:2,自引:0,他引:2  
针对引起水轮机机组振动最主要的振源——尾水管涡带,建立了一种计算水轮机转轮轴系横向激振力的可行性方法。通过对尾水管涡带对转轮流场影响方式和前人试验、数值结果的调查研究,建立了转轮出口延伸处涡带对转轮内流体的扰动简化模型,将这种涡带扰动流场作用于转轮三维紊流流场计算模型上,最终计算得到了不平衡横向激振力,可以作为轴系分析的已知外力,为水轮机轴系动力分析提供必要的数据。  相似文献   

3.
三峡机组蜗壳内紊流的三维数值分析   总被引:6,自引:0,他引:6  
报导了三峡混流式机组模型蜗壳内紊流的三维数值分析结果。文中基于N-S方程和标准的k-ε紊流模型,采用贴体座标和交错网格系统,用SIMPLEC算法对蜗壳内部的流动进行数值模拟,提出设计工况时蜗壳内部的紊流特性。数值分析结果表明:在设计工况,蜗壳内部的流动符合速度矩为常数的设计理论。文中提出的数值方法,可用于改进和优化蜗壳设计,从而提高水轮机的效率,改善水轮机的性能。  相似文献   

4.
针对轴流式水轮机转轮的研制,基于计算机辅助设计CAD和计算流体动力学CFD的联合应用,本文经过对水轮机转轮进行了大量的CAD和CFD迭代设计计算,其中CFD采用标准K-ε湍流模型,对转轮内部流动进行了流场和压力场的比较分析,最后优化设计了一轴流式转轮,结果表明CFD和CAD联合应用是转轮的现代设计强有力的工具。  相似文献   

5.
为了求解水泵水轮机转轮内部的双向流动,提出了基于全三维转轮叶片设计模型的叶型渐近方法.该方法从水轮机方向设计目标叶型,并得到水轮机方向流场.再利用设计程序,从水泵流动方向设计叶型,用单纯形加速法控制速度矩分布变量,使得该叶型逐步逼近目标叶型,并得到水泵方向的流场,即得到同一叶型的双向流场.根据计算出的流场可以预估转轮的双向能量性能与气蚀性能.对一高水头水泵水轮机进行了设计计算,结果表明,该方法是可行的.  相似文献   

6.
基于国内某抽水蓄能电站建立的水力模型并结合该模型试验报告,采用SSTk-ω模型计算带分流叶片水泵水轮机7.5°导叶开度下零流量工况附近的制动工况和反水泵工况,进行定常和非定常数值模拟,研究其内部流场压力分布、速度流线分布及径向力分布规律.结果表明:计算流体动力学数值计算可以很好地模拟分析带分流叶片水泵水轮机的内部流场特性;制动工况下的流态很差,涡结构充满整个流道引起水流拥堵且成不对称分布;反水泵工况导叶和转轮出现了严重的流动分离,水流在叶片中上游发生冲击;分流叶片的存在减小了负压区域,降低了汽蚀现象发生的可能性,有助于水轮机内部水流流动更加平稳;带分流叶片水泵水轮机的径向力在一个周期内的变化规律与转轮叶片数强关联,峰谷值个数与叶片数相对应.  相似文献   

7.
从Navier-Stokes方程出发,采用层流模型描述水流动状态,并在欧拉坐标系中用速度-压力修正法对模型进行求解,考虑到转轮内流道几何形状比较复杂,故采用有限元法进行数值离散,并将该解法用FORTRAN语言编制计算程序,对三峡工程混 式水轮机转轮内部的流场进行数值计算,分析了转轮内的速度和压力分布。  相似文献   

8.
水泵水轮机转轮全三维逆向设计方法   总被引:2,自引:0,他引:2  
为研究可逆机转轮的设计方法,提出了按水泵给定流道参数和转数,从水轮机方向计算叶型的全三维逆向设计方法。对高水头水泵水轮机转轮进行了全三维设计,并对所设计的转轮用三维湍流数值模型进行了性能预估。结果表明全三维逆向设计方法是可行的,设计方法有较好的可控性。由于在设计中综合考虑了水泵和水轮机的双向流动特性,设计转轮有较好的效率。  相似文献   

9.
应用数值模拟方法研究斜流式喷水推进器内部紊流流场,基于紊流流场计算分析了其特性.采用三维贴体坐标网格对计算区域进行剖分离散,选择k-ε双方程紊流模型,应用SIMPLEC数值方法计算内流场各流动参数,进而根据流场的计算结果预测了该推进器内部泵在不同工况下的性能.计算结果与实验结果进行了对比,二者有较好的一致性.  相似文献   

10.
对旋式轴流泵全流道三维定常紊流场的数值模拟   总被引:13,自引:0,他引:13  
为研究对旋式轴流泵的内部流场特性及前后叶轮之间的流场干涉情况,应用标准k-ε紊流模型和SIMPLEC算法进行了定常三维紊流流场的数值模拟,得到了叶片吸力面与压力面、过渡干涉面、全流道下4个轴向位置的径向剖分面和3个径向位置轴向剖分的周向截面的压力分布及等值线图。应用数值模拟的结果能够获得前置叶轮、后置叶轮及整个泵各自的外特性,还可以帮助直观地认识对旋式轴流泵内部流动的耦合与干涉机理,指导水力模型设计。  相似文献   

11.
针对新疆某电站水轮机转轮增容改造 ,基于 k-ε模型的全三维湍流计算技术在流动计算中的应用 ,给出了混流式转轮在贴体坐标系下的湍流计算的基本方程组 .应用该方法编制的程序对该电站水轮机转轮进行了优化后的主要流动计算 ,并设计制造出了新转轮 .经实际运行验证 ,达到了预期性能 ,效果很好 .  相似文献   

12.
水轮机转轮前后流动特性的测试对于了解流动型态、改进水轮机的水力设计有重要意义。用五孔球测量三峡水电站模型水轮机转轮前后液动特性的结果,并对在最优工况及偏离工况下的测试结果作了初步分析。测试结果表明,最优工况的轴面速度分布规律介于一元理论及二元理论假设之间,数值偏大,沿转轮进、出口边的环量分布均为自上冠至下环逐渐增大。  相似文献   

13.
为了更加高效地利用超低水头水力资源,设计了一种采用虹吸式出水流道的轴流式水轮机。针对这一形式的水轮机,在设计水头和额定转速下采用CFD进行三维数值模拟,计算各过流部件的水力损失,研究水轮机的水力性能。通过改变转轮叶片出水边翼形,对比分析转轮出口水流流态与虹吸式出水流道水头损失的关系,研究不同叶片对虹吸式水轮机水力性能的影响。结果表明,在水头、转速和导叶开度相同的情况下,各修改方案中叶片3使得出水流道水头损失较小,其对应的平均涡角为13.26°,出水流道水头损失为0.135 m,水轮机的效率也较高(为89.33%)。此外,选取效率较高的叶片,改变叶片数量,分析其对虹吸式水轮机水力性能的影响。  相似文献   

14.
针对水轮机转轮叶片裂纹现象,从水轮机调速器的开机规律对转轮的影响角度出发,建立计入非线性环节的电液随动系统模型和基于模型综合特性曲线的水轮机模型,分析按一段直线规律变化的闭环开机特性,提出了考虑水轮机工作水头偏差等因素的综合性能指标,并基于该指标对某水电站机组开机过程进行仿真优化。结果表明,按综合指标优化得到的闭环开机过程有优越的动态性能,减少了开机规律对转轮的影响。  相似文献   

15.
通过混流式水轮机转轮上冠型线的优化,以提高水轮机效率为目的,基于ISIGHT软件集成GAMBIT和ANSYS FLUENT16.0软件,采用实验设计的最优拉丁超立方(optimal Latin hypercube, OLH)方法提出了80组设计方案.然后运用ANSYS FLUENT16.0软件对各方案进行数值计算,以设计工况下的水轮机效率为目标函数,进而用响应面方法(response surface method,RSM)得到近似模型.最后结合粒子群优化(PSO)算法进行自动优化设计,提出一种低比转速混流式水轮机转轮上冠型线的优化设计方法.该方法应用于模型混流式水轮机转轮上冠型线的优化设计,结果表明:优化后水轮机水力效率提高0.35%,从而为混流式水轮机转轮上冠型线的优化设计提供了合理有效的途径.  相似文献   

16.
混流式水轮机导水机构二重叶栅的流动   总被引:1,自引:1,他引:0  
阐述了用计算流体动力学CFD(Computational Fluid Dynamics)技术研究水轮机导水机构二重叶栅内部流场性能变化的方法,研究了不同工况流场的速度、压力及二重叶栅能量损失的变化规律,数值解析结果与实验结果吻合。研究表明,导水机构内部流场的变化直接影响到转轮进口流动条件和水轮机运行的稳定性,数值解析结果对优化设计及安全运行具有指导作用。  相似文献   

17.
研究铲磨机各种运动和控制要求,设计出继电控制与PC控制相结合的电气控制系统。此系统在电路设计、电气柜安装、调试维修和操作等方面满足了设计要求。铲磨加工过程的PC控制解决了转轮流道三维表面成形运动的控制难题。PC控制程序基本满足了铲磨工艺要求。  相似文献   

18.
混流水轮机转轮叶片最优化设计   总被引:2,自引:0,他引:2  
用计及叶厚、有限叶片数影响及来流有旋的全三维设计理论及最优化技术中的单纯型法寻优,用SWIFT法将反映包角、叶片流速及流动分离等约束的等式和不等式约束条件计入目标函数,以Vθr的分布为优化参数进行混流式水轮机转轮最优化设计的初步尝试。给出了理论、方法及算例,其中包括分别按汽蚀性能优化和按损失最小优化及多目标优化的结果。其中损失计入叶片正、背面及上冠下环的沿程损失和叶片进口撞击损失、出口扩散损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号