首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coull JA  Beggs S  Boudreau D  Boivin D  Tsuda M  Inoue K  Gravel C  Salter MW  De Koninck Y 《Nature》2005,438(7070):1017-1021
Neuropathic pain that occurs after peripheral nerve injury depends on the hyperexcitability of neurons in the dorsal horn of the spinal cord. Spinal microglia stimulated by ATP contribute to tactile allodynia, a highly debilitating symptom of pain induced by nerve injury. Signalling between microglia and neurons is therefore an essential link in neuropathic pain transmission, but how this signalling occurs is unknown. Here we show that ATP-stimulated microglia cause a depolarizing shift in the anion reversal potential (E(anion)) in spinal lamina I neurons. This shift inverts the polarity of currents activated by GABA (gamma-amino butyric acid), as has been shown to occur after peripheral nerve injury. Applying brain-derived neurotrophic factor (BDNF) mimics the alteration in E(anion). Blocking signalling between BDNF and the receptor TrkB reverses the allodynia and the E(anion) shift that follows both nerve injury and administration of ATP-stimulated microglia. ATP stimulation evokes the release of BDNF from microglia. Preventing BDNF release from microglia by pretreating them with interfering RNA directed against BDNF before ATP stimulation also inhibits the effects of these cells on the withdrawal threshold and E(anion). Our results show that ATP-stimulated microglia signal to lamina I neurons, causing a collapse of their transmembrane anion gradient, and that BDNF is a crucial signalling molecule between microglia and neurons. Blocking this microglia-neuron signalling pathway may represent a therapeutic strategy for treating neuropathic pain.  相似文献   

2.
Peripheral nerve injury triggers central sprouting of myelinated afferents.   总被引:43,自引:0,他引:43  
C J Woolf  P Shortland  R E Coggeshall 《Nature》1992,355(6355):75-78
The central terminals of primary afferent neurons are topographically highly ordered in the spinal cord. Peripheral receptor sensitivity is reflected by dorsal horn laminar location: low-threshold mechanoreceptors terminate in laminae III and IV (refs 2, 3) and high-threshold nociceptors in laminae I, II and V (refs 4,5). Unmyelinated C fibres, most of which are nociceptors, terminate predominantly in lamina II (refs 5, 7). There is therefore an anatomical framework for the transfer of specific inputs to localized subsets of dorsal horn neurons. This specificity must contribute to the relationship between a low-intensity stimulus and an innocuous sensation and a noxious stimulus and pain. We now show that after peripheral nerve injury the central terminals of axotomized myelinated afferents, including the large A beta fibres, sprout into lamina II. This structural reorganization in the adult central nervous system may contribute to the development of the pain mediated by A-fibres that can follow nerve lesions in humans.  相似文献   

3.
Sensory transmitters regulate intracellular calcium in dorsal horn neurons   总被引:4,自引:0,他引:4  
M D Womack  A B MacDermott  T M Jessell 《Nature》1988,334(6180):351-353
Primary afferent terminals in the dorsal horn of the spinal cord release excitatory amino acid and peptide transmitters that initiate the central processing of nociceptive information. The postsynaptic actions of amino acid transmitters on spinal neurons have been well characterized, but the cellular basis of peptide actions remains unclear. Substance P is the best characterized of the peptides present in sensory neurons and has been shown to depolarize dorsal horn neurons and to facilitate nociceptive reflexes. To determine the mechanisms by which substance P contributes to afferent synaptic transmission, we have monitored the levels of intracellular calcium in single isolated rat dorsal horn neurons and report that substance P can produce a prolonged elevation in calcium concentration by mobilizing its release from intracellular stores. This elevation may contribute to the long-term changes in the excitable properties of dorsal horn neurons that occur following afferent fibre stimulation. We have also found that L-glutamate elevates intracellular calcium in substance P-sensitive dorsal horn neurons by increasing calcium influx. These results provide a direct demonstration of intracellular calcium changes in response to neuropeptides in mammalian central neurons. They also indicate that there is convergent regulation of intracellular calcium in dorsal horn neurons by two different classes of sensory transmitters that are co-released from the same afferent terminals.  相似文献   

4.
Sun YG  Chen ZF 《Nature》2007,448(7154):700-703
Itching, or pruritus, is defined as an unpleasant cutaneous sensation that serves as a physiological self-protective mechanism to prevent the body from being hurt by harmful external agents. Chronic itch represents a significant clinical problem resulting from renal diseases and liver diseases, as well as several serious skin diseases such as atopic dermatitis. The identity of the itch-specific mediator in the central nervous system, however, remains elusive. Here we describe that the gastrin-releasing peptide receptor (GRPR) plays an important part in mediating itch sensation in the dorsal spinal cord. We found that gastrin-releasing peptide is specifically expressed in a small subset of peptidergic dorsal root ganglion neurons, whereas expression of its receptor GRPR is restricted to lamina I of the dorsal spinal cord. GRPR mutant mice showed comparable thermal, mechanical, inflammatory and neuropathic pain responses relative to wild-type mice. In contrast, induction of scratching behaviour was significantly reduced in GRPR mutant mice in response to pruritogenic stimuli, whereas normal responses were evoked by painful stimuli. Moreover, direct spinal cerebrospinal fluid injection of a GRPR antagonist significantly inhibited scratching behaviour in three independent itch models. These data demonstrate that GRPR is required for mediating the itch sensation rather than pain, at the spinal level. Our results thus indicate that GRPR may represent the first molecule that is dedicated to mediating the itch sensation in the dorsal horn of the spinal cord, and thus may provide a central therapeutic target for antipruritic drug development.  相似文献   

5.
对雄性Wistar大鼠,结合微电极细胞外记录技术,观察了不同浓度(10%,25%,50%,100%)野木瓜注射液对电刺激大鼠坐骨神经诱发的脊髓背角广动力范围神经元放电活动的影响.结果表明:野木瓜注射液对脊髓背角广动力范围神经元的诱发放电频率具有浓度依赖的抑制作用(P<0.05).野木瓜注射液在脊髓水平上干预痛觉信息的传导和加工,可能是其产生镇痛作用的原因之一.  相似文献   

6.
H L Fields  H Vanegas  I D Hentall  G Zorman 《Nature》1983,306(5944):684-686
Analgesia results when opiates are microinjected into the rostral ventromedial medulla (RVM). This region, which includes the nucleus raphe magnus and the adjacent reticular formation, is rich in immunoreactive enkephalin-containing neurones and terminals, and contains neurones that project to the spinal cord dorsal horn where they inhibit identified nociceptive spinothalamic tract neurones. Although opiates have previously been reported either to excite or inhibit RVM cells, the possibility of an opiate effect being consistent within a physiologically defined subclass has not been examined. Recently we described a class of neurone in the RVM (the off-cell) that abruptly pauses just before a heat-evoked tail-flick reflex. If off-cells are made to fire continuously by direct electrical stimulation of the RVM, the tail-flick reflex does not occur. We report here that analgesic doses of morphine completely eliminate the pause in firing that precedes the tail-flick reflex. We propose that this disinhibition of off-cells in the RVM is a primary process contributing to opiate inhibition of nociceptor-induced reflexes.  相似文献   

7.
Y M Song  L Y Huang 《Nature》1990,348(6298):242-245
Glycine is an important inhibitory transmitter in the brainstem and spinal cord. In the trigeminal subnucleus caudalis (medullary dorsal horn) and in the spinal dorsal horn (the relaying centres for processing pain and sensory information), glycine inhibits the glutamate-evoked depolarization and depresses firing of neurons. The binding of glycine to its receptor produces a large increase in Cl- conductance, which causes membrane hyperpolarization. The selectivity and gating properties of glycine receptor channels have been well characterized; the glycine receptor molecules have also been purified. The amino-acid sequence, deduced from complementary DNA clones encoding one of the peptides (the 48K subunit), shows significant homology with gamma-aminobutyric acid A (GABAA) and nicotinic acetylcholine receptor subunits, suggesting that glycine receptors may belong to a superfamily of chemically gated channel proteins. However, very little is known about the modulation of glycine receptor channels. We have investigated the regulation of strychnine-sensitive glycine receptor channels by cyclic AMP-dependent protein kinase in neurons isolated from spinal trigeminal nucleus of rat and report here that the protein kinase A dramatically increased the glycine-induced Cl- currents by increasing the probability of the channel openings. GS protein, which is sensitive to cholera toxin, was involved in the modulation.  相似文献   

8.
S P Hunt  A Pini  G Evan 《Nature》1987,328(6131):632-634
It has been suggested that the proto-oncogenes c-fos and c-myc participate in the control of genetic events which lead to the establishment of prolonged functional changes in neurons. Expression of c-fos and c-myc are among the earliest genetic events induced in cultured fibroblast and phaeochromocytoma cell lines by various stimuli including growth factors, peptides and the intracellular second messengers diacylglycerol, cAMP and Ca2+. We report here that physiological stimulation of rat primary sensory neurons causes the expression of c-fos-protein-like immunoreactivity in nuclei of postsynaptic neurons of the dorsal horn of the spinal cord. Activation of small-diameter cutaneous sensory afferents by noxious heat or chemical stimuli results in the rapid appearance of c-fos-protein-like immunoreactivity in the superficial layers of the dorsal horn. However, activation of low-threshold cutaneous afferents results in fewer labelled cells with a different laminar distribution. No c-fos induction was seen in the dorsal root ganglia, gracile nucleus or ventral horn. Thus, synaptic transmission may induce rapid changes in gene expression in certain postsynaptic neurons.  相似文献   

9.
Inflammatory diseases and neuropathic insults are frequently accompanied by severe and debilitating pain, which can become chronic and often unresponsive to conventional analgesic treatment. A loss of synaptic inhibition in the spinal dorsal horn is considered to contribute significantly to this pain pathology. Facilitation of spinal gamma-aminobutyric acid (GABA)ergic neurotransmission through modulation of GABA(A) receptors should be able to compensate for this loss. With the use of GABA(A)-receptor point-mutated knock-in mice in which specific GABA(A) receptor subtypes have been selectively rendered insensitive to benzodiazepine-site ligands, we show here that pronounced analgesia can be achieved by specifically targeting spinal GABA(A) receptors containing the alpha2 and/or alpha3 subunits. We show that their selective activation by the non-sedative ('alpha1-sparing') benzodiazepine-site ligand L-838,417 (ref. 13) is highly effective against inflammatory and neuropathic pain yet devoid of unwanted sedation, motor impairment and tolerance development. L-838,417 not only diminished the nociceptive input to the brain but also reduced the activity of brain areas related to the associative-emotional components of pain, as shown by functional magnetic resonance imaging in rats. These results provide a rational basis for the development of subtype-selective GABAergic drugs for the treatment of chronic pain, which is often refractory to classical analgesics.  相似文献   

10.
J Dodd  D Solter  T M Jessell 《Nature》1984,311(5985):469-472
Dorsal root ganglion (DRG) neurones transmit cutaneous sensory information from the periphery to the spinal cord. Within the dorsal horn of the spinal cord, classes of sensory fibres that are activated by different cutaneous stimuli terminate in separate and highly restricted laminae. Although the developmental events resulting in the laminar organization of sensory afferent terminals have not been defined, it is likely that interactions between surface molecules on DRG and dorsal horn neurones are involved in the generation of afferent synaptic connections. The identification of surface antigens that distinguish functional subclasses of DRG neurones would represent a first step in establishing the existence and nature of such molecules. We report here that monoclonal antibodies directed against carbohydrate differentiation antigens identify cytoplasmic and cell surface molecules expressed selectively by functional subsets of DRG neurons.  相似文献   

11.
Functional regeneration of sensory axons into the adult spinal cord   总被引:34,自引:0,他引:34  
Ramer MS  Priestley JV  McMahon SB 《Nature》2000,403(6767):312-316
The arrest of dorsal root axonal regeneration at the transitional zone between the peripheral and central nervous system has been repeatedly described since the early twentieth century. Here we show that, with trophic support to damaged sensory axons, this regenerative barrier is surmountable. In adult rats with injured dorsal roots, treatment with nerve growth factor (NGF), neurotrophin-3 (NT3) and glial-cell-line-derived neurotrophic factor (GDNF), but not brain-derived neurotrophic factor (BDNF), resulted in selective regrowth of damaged axons across the dorsal root entry zone and into the spinal cord. Dorsal horn neurons were found to be synaptically driven by peripheral nerve stimulation in rats treated with NGF, NT3 and GDNF, demonstrating functional reconnection. In behavioural studies, rats treated with NGF and GDNF recovered sensitivity to noxious heat and pressure. The observed effects of neurotrophic factors corresponded to their known actions on distinct subpopulations of sensory neurons. Neurotrophic factor treatment may thus serve as a viable treatment in promoting recovery from root avulsion injuries. I  相似文献   

12.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   

13.
扬子鳄胚胎脊髓胸段的组织发生   总被引:3,自引:1,他引:2  
用尼氏染色及Haggqvist染色法观察了24例孵育3~62天的扬子鳄胚胎的脊髓胸段组织发生过程。孵育第3天,脊髓横断面近圆形,中央管呈长椭圆形。第6天脊髓呈卵圆形,中央管呈窄而长的梭形,套层明显。第12天,脊髓灰质的腹角明显,脊髓外周出现一薄层白质。第18~30天中,灰质腹角进一步扩大,背角逐渐形成。两侧背角不断向正中靠拢并合并,中央管缩小呈圆形。白质明显增厚并形成背索、侧索和腹索。第30~62  相似文献   

14.
Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia   总被引:83,自引:0,他引:83  
The vanilloid receptor-1 (VR1) is a ligand-gated, non-selective cation channel expressed predominantly by sensory neurons. VR1 responds to noxious stimuli including capsaicin, the pungent component of chilli peppers, heat and extracellular acidification, and it is able to integrate simultaneous exposure to these stimuli. These findings and research linking capsaicin with nociceptive behaviours (that is, responses to painful stimuli in animals have led to VR1 being considered as important for pain sensation. Here we have disrupted the mouse VR1 gene using standard gene targeting techniques. Small diameter dorsal root ganglion neurons isolated from VR1-null mice lacked many of the capsaicin-, acid- and heat-gated responses that have been previously well characterized in small diameter dorsal root ganglion neurons from various species. Furthermore, although the VR1-null mice appeared normal in a wide range of behavioural tests, including responses to acute noxious thermal stimuli, their ability to develop carrageenan-induced thermal hyperalgesia was completely absent. We conclude that VR1 is required for inflammatory sensitization to noxious thermal stimuli but also that alternative mechanisms are sufficient for normal sensation of noxious heat.  相似文献   

15.
ATP excites a subpopulation of rat dorsal horn neurones   总被引:11,自引:0,他引:11  
C E Jahr  T M Jessell 《Nature》1983,304(5928):730-733
The peripheral receptive properties and central projections of different classes of dorsal root ganglion neurones are well characterized. Much less is known about the transmitters used by these neurones. Excitatory amino acids have been proposed as sensory transmitters but the sensitivity of virtually all central neurones to those compounds has made it difficult to assess their precise role in sensory transmission. Several neuropeptides have been localized within discrete subclasses of primary sensory neurones that project to the superficial dorsal horn of the spinal cord and may be afferent transmitters. However, only about one-third of spinal sensory neurones have been shown to contain neuropeptides. We have recently described the presence of a 5'-nucleotide hydrolysing acid phosphatase in a separate subpopulation of dorsal root ganglion neurones that project to the superficial dorsal horn. This enzyme also appears in certain autonomic and endocrine cells that contain high concentrations of releasable nucleotides in their storage granules. It is possible that the presence of this enzyme in sensory neurones is also associated with a releasable pool of nucleotides. Holton and Holton have provided evidence that ATP is released from the peripheral terminals of unmyelinated sensory fibres and have suggested that release of ATP might also occur from central sensory terminals. To investigate the possibility that nucleotides act as central sensory transmitters we have examined their actions on rat dorsal horn and dorsal root ganglion neurones maintained in dissociated cell culture. We report here a selective and potent excitation of subpopulations of both neuronal types by ATP.  相似文献   

16.
A J Cook  C J Woolf  P D Wall  S B McMahon 《Nature》1987,325(7000):151-153
The central terminals of cutaneous primary afferent neurons are spatially ordered in the dorsal horn in a highly organized fashion such that a point-to-point map represents the body surface. This afferent terminal somatotopic map correlates with the map of the receptive fields of the cells on which they terminate. The location, size and modality of the cutaneous receptive fields of dorsal horn neurons necessarily depend upon the anatomical presence of afferent nerve fibres which deliver information from the periphery, directly or indirectly, to the cells. However the receptive field size and modality of a cell do not depend only on anatomical connections. Excitatory and inhibitory interneurons, descending influences and facilitations or depressions of synaptic contacts can alter receptive field properties. Here we show that prolonged and substantial cutaneous receptive field changes can be produced by brief inputs from peripheral unmyelinated afferent fibres.  相似文献   

17.
Neuropeptide Y (NPY) is believed to exert antinociceptive actions by inhibiting the release of substance P and other 'pain neurotransmitters' in the spinal cord dorsal horn. However, the physiological significance and potential therapeutic value of NPY remain obscure. It is also unclear which receptor subtype(s) are involved. To identify a possible physiological role for the NPY Y1 receptor in pain transmission, we generated NPY Y1 receptor null mutant (Y1-/-) mice by homologous recombination techniques. Here we show that Y1-/- mice develop hyperalgesia to acute thermal, cutaneous and visceral chemical pain, and exhibit mechanical hypersensitivity. Neuropathic pain is increased, and the mice show a complete absence of the pharmacological analgesic effects of NPY. In the periphery, Y1 receptor activation is sufficient and required for substance P release and the subsequent development of neurogenic inflammation and plasma leakage. We conclude that the Y1 receptor is required for central physiological and pharmacological NPY-induced analgesia and that its activation is both sufficient and required for the release of substance P and initiation of neurogenic inflammation.  相似文献   

18.
McLean DL  Fan J  Higashijima S  Hale ME  Fetcho JR 《Nature》2007,446(7131):71-75
Animals move over a range of speeds by using rhythmic networks of neurons located in the spinal cord. Here we use electrophysiology and in vivo imaging in larval zebrafish (Danio rerio) to reveal a systematic relationship between the location of a spinal neuron and the minimal swimming frequency at which the neuron is active. Ventral motor neurons and excitatory interneurons are rhythmically active at the lowest swimming frequencies, with increasingly more dorsal excitatory neurons engaged as swimming frequency rises. Inhibitory interneurons follow the opposite pattern. These inverted patterns of recruitment are independent of cell soma size among interneurons, but may be partly explained by concomitant dorso-ventral gradients in input resistance. Laser ablations of ventral, but not dorsal, excitatory interneurons perturb slow movements, supporting a behavioural role for the topography. Our results reveal an unexpected pattern of organization within zebrafish spinal cord that underlies the production of movements of varying speeds.  相似文献   

19.
 触觉不仅包含对物理特征的感知,还包括对情感性信息的识别,其信息的整合是人类认识环境的基础。本文阐述了编码不同特征触觉信息的皮肤感受器是触觉信息感知的结构基础;讨论了触觉信息在外周和中枢神经系统的加工机制。其中脊髓背角是触觉信息在皮层下水平加工的初级枢纽,躯体感觉皮层是加工触觉信息的主要脑区,且针对不同特征的触觉信息加工,存在相对独立的脑网络连接。本文还探讨了触觉与跨模态感觉的交互作用,揭示了多模态感觉信息整合的神经机制及其广泛的应用价值。  相似文献   

20.
With the techniques of intracellular recording and labelling, we investigated pain sensation and modulation of the somatic cortical cortex at the neuron’s level. After observing the evoked potentials from stimulating the saphenous nerves (SN) of 654 neurons in SI area of the cats, we labelled 30 of the neurons with Neurobiotin to preserve the distribution and the morphologic characteristics of the neurons in the cortex. Based on the tridimensional reconstruction in addition to the eletrophysiological functions, we found clear morphological distinctions between nociceptive and non-nociceptive neurons (P<0.01). This result provided new experimental material to illustrate the function of nociceptive neurons in somatosensory cortex (SI) and presented further evidence to support the “specificity theory” of pain sensation in terms of morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号