首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The properties of an interacting electron system depend on the electron correlations and the effective dimensionality. For example, Coulomb repulsion between electrons may inhibit, or completely block, conduction by intersite electron hopping, thereby determining whether a material is a metal or an insulator. Furthermore, correlation effects increase as the number of effective dimensions decreases; in three-dimensional systems, the low-energy electronic states behave as quasiparticles, whereas in one-dimensional systems, even weak interactions break the quasiparticles into collective excitations. Dimensionality is particularly important for exotic low-dimensional materials where one- or two-dimensional building blocks are loosely connected into a three-dimensional whole. Here we examine two such layered metallic systems with angle-resolved photoemission spectroscopy and electronic transport measurements, and we find a crossover in the number of effective dimensions from two to three with decreasing temperature. This is apparent from the observation that, in the direction perpendicular to the layers, the materials have an insulating character at high temperatures but become metal-like at low temperatures, whereas transport within the layers remains metallic over the whole temperature range. We propose that this change in effective dimensionality correlates with the presence of coherent quasiparticles within the layers.  相似文献   

2.
Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales. Rapid progress in plasmonics has largely relied on advances in device nano-fabrication, whereas less attention has been paid to the tunable properties of plasmonic media. One such medium--graphene--is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage. Here, using infrared nano-imaging, we show that common graphene/SiO(2)/Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene. Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.  相似文献   

3.
Interacting conduction electrons are usually described within Fermi-liquid theory, which states that, in spite of strong interactions, the low-energy excitations are electron-like quasiparticles with charge and spin. In recent years there has been tremendous interest in conducting systems that are not Fermi liquids, motivated by the observation of highly anomalous metallic states in various materials, most notably the copper oxide superconductors. Non-Fermi-liquid behaviour is generic to one-dimensional interacting electron systems, which are predicted to be Luttinger liquids. One of their key properties is spin-charge separation: instead of quasiparticles, collective excitations of charge (with no spin) and spin (with no charge) are formed, which move independently and at different velocities. However, experimental confirmation of spin-charge separation remains a challenge. Here we report experiments probing the charge and heat current in quasi-one-dimensional conductors--the organic Bechgaard salts. It was found that the charge and spin excitations have distinctly different thermal conductivities, which gives strong evidence for spin-charge separation. The spin excitations have a much larger thermal conductivity than the charge excitations, which indicates that the coupling of the charge excitations to the lattice is important.  相似文献   

4.
Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for both information processing and the study of fundamental solid-state physics issues. Here we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and 'read out'. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.  相似文献   

5.
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excited accompanying a strong near field enhancement that decays in a subwavelength scale, which have potential applications in the surface-enhanced Raman scattering, biosensor, optical communication, solar cells, and nonlinear optical frequency mixing. In the present article, we review the Green’s matrix method for solving the surface plasmon resonances and near field in arbitrarily shaped nanostructures and in binary metallic nanostructures. Using this method, we design the plasmonic nanostructures whose resonances are tunable from the visible to near-infrared, study the interplay of plasmon resonances, and propose a new way to control plasmonic resonances in binary metallic nanostructures.  相似文献   

6.
阐述了局域表面等离子体特性,金属纳米粒子的常用制备方法,以及不同形状、尺寸等因素对局域表面等离子体光谱和灵敏度的影响,分析了表面增强拉曼散射的增强因子与金属纳米粒子的等离子共振波长和拉曼激发波长之间的关系,介绍了局域表面等离子体在生物传感方面的应用.  相似文献   

7.
低能电子与半导体表面的相互作用能激发带间电子跃迁和(或)表面振动,因而对背散射电子能量分布的高分辨率测量可望给出与这些激发相关的丰富信息,近年来的实验研究证实,进行这样的电子能量损失测量确能从各种不同半导体得到的诸发禁带宽度,表面电子态的能量,表面光学声子的特性,表面原子的成键方式,表面反应的产物等许多有关表面原子和电子结构的重要参数。  相似文献   

8.
Matsui T  Agrawal A  Nahata A  Vardeny ZV 《Nature》2007,446(7135):517-521
Resonantly enhanced light transmission through periodic subwavelength aperture arrays perforated in metallic films has generated significant interest because of potential applications in near-field microscopy, photolithography, displays, and thermal emission. The enhanced transmission was originally explained by a mechanism where surface plasmon polaritons (collective electronic excitations in the metal surface) mediate light transmission through the grating. In this picture, structural periodicity is perceived to be crucial in forming the transmission resonances. Here we demonstrate experimentally that, in contrast to the conventional view, sharp transmission resonances can be obtained from aperiodic aperture arrays. Terahertz transmission resonances are observed from several arrays in metallic films that exhibit unusual local n-fold rotational symmetries, where n = 10, 12, 18, 40 and 120. This is accomplished by using quasicrystals with long-range order, as well as a new type of 'quasicrystal approximates' in which the long-range order is somewhat relaxed. We find that strong transmission resonances also form in these aperiodic structures, at frequencies that closely match the discrete Fourier transform vectors in the aperture array structure factor. The shape of these resonances arises from Fano interference of the discrete resonances and the non-resonant transmission band continuum related to the individual holes. Our approach expands potential design parameters for aperture arrays that are aperiodic but contain discrete Fourier transform vectors, and opens new avenues for optoelectronic devices.  相似文献   

9.
We theoretically and experimentally demonstrate that refractive index of the prism used to load metal film has significant influence on sensitivity of surface plasmon resonance based sensors. The prism with lower refractive index gives the sensors a higher sensitivity in detecting refractive index variations of a sample. We attribute this effect to the fact that a prism with low refractive index will increase coupling distance between surface plasmons and the medium under investigation. Foundation item: Supported by Wuhan University and National Education Ministry of China Biography: Wang Guo-ping (1964-), male, Professor, research direction: bolographic materials, diffractive optical elements, optical properties of metallic nanopracticles and metal-dielectric nanostructures  相似文献   

10.
Hayden SM  Mook HA  Dai P  Perring TG  Doğan F 《Nature》2004,429(6991):531-534
In conventional superconductors, lattice vibrations (phonons) mediate the attraction between electrons that is responsible for superconductivity. The high transition temperatures (high-T(c)) of the copper oxide superconductors has led to collective spin excitations being proposed as the mediating excitations in these materials. The mediating excitations must be strongly coupled to the conduction electrons, have energy greater than the pairing energy, and be present at T(c). The most obvious feature in the magnetic excitations of high-T(c) superconductors such as YBa2Cu3O6+x is the so-called 'resonance'. Although the resonance may be strongly coupled to the superconductivity, it is unlikely to be the main cause, because it has not been found in the La2-x(Ba,Sr)(x)CuO4 family and is not universally present in Bi2Sr2CaCu2O8+delta (ref. 9). Here we use inelastic neutron scattering to characterize possible mediating excitations at higher energies in YBa2Cu3O6.6. We observe a square-shaped continuum of excitations peaked at incommensurate positions. These excitations have energies greater than the superconducting pairing energy, are present at T(c), and have spectral weight far exceeding that of the 'resonance'. The discovery of similar excitations in La2-xBa(x)CuO4 (ref. 10) suggests that they are a general property of the copper oxides, and a candidate for mediating the electron pairing.  相似文献   

11.
利用含时密度泛函理论(time-dependent density functional theory(TDDFT)),研究了锑烯纳米结构表面等离激元的激发特性,并给出了微扰场沿着扶手椅边界和Z字边界激发时锑烯纳米结构的吸收光谱.结果表明沿不同的方向激发,吸收光谱不同.距锑烯纳米结构表面0.9处的能量共振点的电荷密度分布表明,在低能共振区,等离激元共振属于键合二聚体的等离激元模式(BDP).  相似文献   

12.
As silicon is the basis of conventional electronics, so strontium titanate (SrTiO(3)) is the foundation of the emerging field of oxide electronics. SrTiO(3) is the preferred template for the creation of exotic, two-dimensional (2D) phases of electron matter at oxide interfaces that have metal-insulator transitions, superconductivity or large negative magnetoresistance. However, the physical nature of the electronic structure underlying these 2D electron gases (2DEGs), which is crucial to understanding their remarkable properties, remains elusive. Here we show, using angle-resolved photoemission spectroscopy, that there is a highly metallic universal 2DEG at the vacuum-cleaved surface of SrTiO(3) (including the non-doped insulating material) independently of bulk carrier densities over more than seven decades. This 2DEG is confined within a region of about five unit cells and has a sheet carrier density of ~0.33 electrons per square lattice parameter. The electronic structure consists of multiple subbands of heavy and light electrons. The similarity of this 2DEG to those reported in SrTiO(3)-based heterostructures and field-effect transistors suggests that different forms of electron confinement at the surface of SrTiO(3) lead to essentially the same 2DEG. Our discovery provides a model system for the study of the electronic structure of 2DEGs in SrTiO(3)-based devices and a novel means of generating 2DEGs at the surfaces of transition-metal oxides.  相似文献   

13.
通过计算分界面附近的能流矢量曲线,对贵金属、超材料和负折射光子晶体表面的逆古斯汉欣位移的物理机制进行了研究.结果表明,虽然一定频率的入射光波在这3类材料表面反射时都能产生逆古斯汉欣位移,但逆古斯汉欣位移发生的物理机制完全不同.金属表面产生的逆古斯汉欣位移是因为TM偏振入射光诱导金属表面自由电子振荡,从而激发表面等离子体波;超材料表面产生的逆古斯汉欣位移是因为反射光束相对入射光束发生了相位突变;负折射光子晶体表面产生的逆古斯汉欣位移是光子晶体的等效负折射效应和周期性表面的综合作用,即全反射时激发了后向表面波.  相似文献   

14.
利用Mott截面和介电函数模型,借助Monte Carlo方法模拟了电子在光刻胶PMMA和衬底中的弹性散射和非弹性散射.通过统计电子的能量沉积分布,发现低能电子的大部分能量沉积在光刻胶中而非衬底,所以在电子束光刻中有着更高的效率.并且还得到了在不同的入射电子能量下,光刻胶完全曝光所对应的的最佳厚度.  相似文献   

15.
起源于金属中自由电子集体振荡的表面等离激元,具有超小的光学模式体积和亚波长局域的近场增益,为纳米尺度上研究光和物质相互作用带来新的机遇.共振的纳米金属结构的近场区域,具有各向异性的珀塞尔系数,并且可以为量子体系提供近场激发.我们理论上演示了基于表面等离激元结构的单分子共振荧光、原子布居数的本征量子拍频及其在表面等离激元结构中的纳米尺度上的实现、表面等离激元诱导的各向异性珀塞尔系数导致的亚波长尺度自发辐射谱线的变化.这些结果在超紧凑的有源量子器件中有潜在应用.  相似文献   

16.
H Yoon  KY Yeung  V Umansky  D Ham 《Nature》2012,488(7409):65-69
Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.  相似文献   

17.
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric control of light could be through plasmon polaritons—coupled excitations of photons and charge carriers—in graphene. In this two-dimensional sheet of carbon atoms, it is expected that plasmon polaritons and their associated optical fields can readily be tuned electrically by varying the graphene carrier density. Although evidence of optical graphene plasmon resonances has recently been obtained spectroscopically, no experiments so far have directly resolved propagating plasmons in real space. Here we launch and detect propagating optical plasmons in tapered graphene nanostructures using near-field scattering microscopy with infrared excitation light. We provide real-space images of plasmon fields, and find that the extracted plasmon wavelength is very short—more than 40 times smaller than the wavelength of illumination. We exploit this strong optical field confinement to turn a graphene nanostructure into a tunable resonant plasmonic cavity with extremely small mode volume. The cavity resonance is controlled in situ by gating the graphene, and in particular, complete switching on and off of the plasmon modes is demonstrated, thus paving the way towards graphene-based optical transistors. This successful alliance between nanoelectronics and nano-optics enables the development of active subwavelength-scale optics and a plethora of nano-optoelectronic devices and functionalities, such as tunable metamaterials, nanoscale optical processing, and strongly enhanced light–matter interactions for quantum devices and biosensing applications.  相似文献   

18.
在低速太阳风中,在离子声波湍动已经激发的区域,可以产生沿着一定方向运动的逃兔电子束,该电子束可以激发起强烈的纵等离子激元的湍动,朗缪尔波的主要吸收机制是通过等离子体热电子的非线性散射,朗缪尔波受激转换为离子声波,这种转换随着电子的迅速加热,几乎所有有纵等离子激元的能量都转移给散射电子,导致低速太阳风中电子的温度高于质了的温度。  相似文献   

19.
Microstructured metallic gratings can be used to enhance the light emission efficiency of LEDs,and the spectral radiation properties of the LEDs vary with the different metallic materials used,leading to variation of the light emission enhancement at the same wavelength for different metallic grating materials.In this paper,the finite difference time domain(FDTD) method has been used to investigate the light emission extraction enhancement of LEDs in which gratings with different metallic materials have been applied.Through analysis of the permittivity of the metals and the quality factors of the surface plasmons(SPs),we concluded that the larger the plasma frequency obtained for the metallic interband transition,then the more suitable the metals are for light emission extraction of photons with relatively short wavelengths.This is because of the abundance of free electrons in the metals with large plasma frequencies.We also found that the wavelength-dependent trends of the extraction enhancement resulting from the scattering mechanism for different metallic materials are similar to each other.For SP-induced enhancement,either the enhancement peak position or the peak value changes significantly with the different metals.  相似文献   

20.
研究了在一个扭曲的谐振势中两组分简并费米气体的集体激发.运用变分法导出了1组描述两组分简并费米气体质心运动与宽度变化的耦合方程,获得了2个低能激发模.在不同的有效s波相互作用和有效p波相互作用下,分别讨论了由于势的非简谐改变引起的集体激发的频移和集体激发的塌缩与恢复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号