首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly(acrylic acid), poly(N-isopropylacrylamide) and polyacrylamide functionalized MWNTs were prepared by Ce(IV)-induced redox radical polymerization. The reaction can be conducted in aqueous media at room temperature, and the polymer graft ratio increased with the increase of monomer feed ratio. MWNTs anchored with PAA on the surface are pH sensitive and exhibit a reversible assembly–deassembly response in aqueous solution, whereas those coated with PNIPAM are thermally sensitive. All the polymer-functionalized MWNTs are highly soluble in water to give robust stable black solutions. Such water-soluble MWNTs are promising for biological and biomedical applications.  相似文献   

2.
叔铵盐2-二甲氨基氯乙烷盐酸盐(DCH)作为季铵盐的前驱体,通过环氧氯丙烷接枝到氧化多壁碳纳米管(O-MWNTs)上,得到的季铵盐改性多壁碳纳米管(MWNTs)(即N~+-MWNTs)作为添加剂加入铸膜液制备聚偏氟乙烯(PVDF)平板超滤膜(PVDF/N~+-MWNTs膜).场发射扫描电子显微镜(FESEM)用来观测不同的N~+-MWNTs添加量对膜形貌的影响.结果表明,制得的PVDF/N~+-MWNTs复合膜表面粗糙度明显减小,同时亲水性得到明显改善.在对牛血清白蛋白(BSA)的污染-清洗循环实验中,PVDF/N~+-MWNTs复合膜相比于纯PVDF膜,纯水通量由110.5×10~(-5)L·m~(-2)·h~(-1)·Pa~(-1)上升至197.4×10~(-5)L·m~(-2)·h~(-1)·Pa~(-1).此外,通量恢复率(FRR)明显提高,尤其在3次循环之后,对BSA的截留性能没有下降.在对大肠杆菌和金黄色葡萄球菌的抗菌实验中,PVDF/N~+-MWNTs复合膜展现出优异的抑菌性,且在膜的抗菌性再生循环中,3次循环之后PVDF/N+-MWNTs复合膜的抑菌率依然维持在较高的水平.  相似文献   

3.
SnO2/multiwalled carbon nanotubes (MWNTs) have been studied as gas sensing materials. Compared with pure SnO2, SnO2/MWNTs exhibit improved ethanol sensing properties such as higher sensitivity and quicker response/recovery at 300°C. The sensitivity is 35, 65, 166 and 243 to 500, 1000, 2000 and 3000 ppm ethanol, respectively. The response time is about 1 s, and the recovery time is about 5 s. The sensing improvement is explained in terms of the appropriate basal resistance and enhanced signal transfer brought by MWNTs.  相似文献   

4.
Using an ultra-sensitive differential scanning calorimetry (US-DSC), we have investigated the folding and aggregation behaviors of poly(N-isopropylacrylamide) (PNIPAM) chains in dilute and semidilute solutions. In the heating process, the intrachain folding and interchain aggregation simultaneously occur in the dilute solutions, and the ratio of intrachain folding increases with decreasing concentra- tion. In the semidilute solutions, PNIPAM chains show limited interchain aggregation with elevated temperature, because most of the PNIPAM chains have been collapsed at lower temperature. In an ex- tremely dilute solution, PNIPAM chains undergo a single folding transition in the heating process. By extrapolating heating rate and concentration to zero, we have obtained the phase transition tempera- ture (Ts) and enthalpy change (Arts) of the single chain folding. AHs is higher than that for a phase transition involving intrachain collapse and interchain aggregation, indicating that a single chain fold- ing can not be taken to be a macroscopic phase transition.  相似文献   

5.
在室温下利用化学掺杂法合成了K掺杂多壁碳纳米管KMWNTs,通过固定葡萄糖氧化酶(GOx)在KMWNTs修饰的玻碳电极表面,并利用葡萄糖氧化酶(GOx)的直接电化学,构建了一种新型葡萄糖传感器。利用扫描电镜对MWNTs和KMWNTs的形貌进行表征发现,K掺杂后没有破坏MWNTs的管状结构;采用电化学系统对传感器的性质进行了研究,结果表明,与单一的MWNTs相比,KMWNTs显示了更为有效的电催化活性。在此基础上,以KMWNTs膜为基底构建了抗干扰能力强、稳定性好、灵敏度高、响应快的葡萄糖传感器,在-0.52 V的检测电位下,该传感器对葡萄糖响应的线性范围为0.1~3.0 mmol·L-1(R=0.998),检测限为0.02 mmol·L-1(S/N=3),常见干扰物质如抗坏血酸和尿酸的存在不影响测定。  相似文献   

6.
 基于带正电荷的壳聚糖(CHIT)和功能化的带负电荷的多壁碳纳米管(MWNTs)之间的静电吸附,通过层层自组装的方法制备了均一、 稳定的{CHIT/MWNTs}9多层膜。组装{CHIT/MWNTs}9多层膜的玻碳(GC)电极用来研究H2 O2的电催化氧化,测定H2 O2的线性范围﹑响应时间和检测下限分别为:8×10-6~1.0×10-2 mol/L (相关性系数为0.997)﹑2 s 和4×10-6 mol/L。另外,{CHIT/MWNTs}9/GC电极具有较好的稳定性能。  相似文献   

7.
采用原位乳液聚合法制备了甲基丙烯酸甲酯-苯乙烯共聚物(P(MMA-St))包覆多壁碳纳米管(MWNTs)复合材料.研究了MWNTs含量和共聚物单体配比对复合材料导电性能的影响;用 SEM、FTIR、Raman和XPS等手段,探究了复合材料结构、相互作用与性能之间的关系.结果表明,MWNTs的加入提高了复合材料的热稳定性和电导率:当MWNTs含量一定,提高PMMA链段含量时,共聚物与MWNTs的作用增强,共聚物更易均匀地包覆在MWNTs表面,呈现出优异的热、电性能.  相似文献   

8.
 作为第3代氟诺酮类合成抗菌药,氧氟沙星的抗菌谱广、抗菌活性强、口服吸收完全、体内分布广、生物利用度高.但氧氟沙星有效抑菌浓度低,对多数致病菌的MIC90在1μg·mL-1内,因此制备更为安全有效的氧氟沙星缓释制剂十分必要.本文采用微波辅助硝酸氧化法修饰了多壁碳纳米管引入羧基,制备了氧化多壁碳纳米管.在对甲苯磺酸催化下,以聚乙二醇修饰了氧化多壁碳纳米管,制备了分散性能较好的多壁碳纳米管-聚乙二醇复合材料.以多壁碳纳米管-聚乙二醇复合材料为药物载体、氧氟沙星为模型药物,考查了多壁碳纳米管-聚乙二醇复合材料的载药释药性能.研究结果表明:多壁碳纳米管-聚乙二醇复合材料具有较大的载药率,达92.8%;在磷酸缓冲溶液(pH=7.4)中,24h内可持续稳定缓慢释放氧氟沙星.  相似文献   

9.
采用阳极氧化法对多壁碳纳米管(MWNTs)进行表面处理以提高其表面极性官能团含量。研究了不同电解参数对MWNTs处理结果的影响,采用X射线光电子能谱对处理前后的MWNTs的表面特征进行了分析。结果表明,经阳极氧化处理后,MWNTs表面氧原子摩尔分数与极性官能团总量均有不同程度增加。通电量和碱性电解质的电导率(物质的量浓度)是阳极氧化处理过程的主要影响因素,MWNTs表面极性官能团总量的增加可以归结为羟基的增加和羰基的减少,另外还探讨了可能的氧化反应机理。  相似文献   

10.
多壁碳纳米管氨基化修饰   总被引:2,自引:0,他引:2  
将多壁碳纳米管高温处理除去无定形碳、然后用混酸(硫酸/硝酸)对碳纳米管进行表面羧基化.将羧基化碳纳米管与二氯亚砜反应得到酰氯化碳纳米管,然后将其分别与4,4'-二氨基二苯砜(DDS)、1,3-二(3-氨丙基)-1,1,3,3-四甲基二甲硅醚(&DA)、4",4"'-六氟异亚丙基-二(4-苯氧基苯胺)(FA)等二胺反应得到不同氨基化碳纳米管,FTIR,Raman,EDX,XRD,SEM,TGA分别对氨基化碳纳米管的结构与性能进行表征.通过对其在不同溶剂中的分散性的测试,氨基化碳纳米管在乙醇中的分散性明显优于未经修饰过的碳纳米管.  相似文献   

11.
Carbon nitride films are deposited on Si (001) substrates by reactive dc magnetron sputtering graphite in a pure N2 discharge. The structure of carbon nitride films has been probed using Fourier transformation infrared, near edge X-ray absorption fine structure (NEXAFS) and high resolution electron microscopy (HREM), and the hardness has been evaluated in nanoin-dentation experiments. FTIR spectra show that N atoms are bound to sp1, sp2, and sp3 hybridized C atoms. C1s NEXAFS spectra show that the intensity of π* resonance is the lowest for the film grown at substrate temperature TS = 350℃, with a turbostratic-like structure and high hardness, while it is the highest for the film grown at TS = 100℃, with an amorphous structure and low hardness. The correlation between the structure and hardness of carbon nitride films has been discussed.  相似文献   

12.
A solvothermal reaction of anhydrous CaNaCl3 and sodium using cyclohexane as solvent and NiCI2 as catalyst precursor has been carried out to prepare carbon nitride nanotubes successfully at 230℃ and 1.8 MPa. The carbon nitride nanotubes were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED), electron energy loss spectrum (EELS) and Raman spectrum.SEM and TEM results indicated that the tubes have a length of 20-30 μm, a uniform outer diameter of about 50-60 nm,an inner diameter of 30-40 nm and are highly ordered assembled as bundles. The EELS measurement indicated that the ratio of N/C was about 1.00. The ED and XRD analyses revealed that the tube may have a new CN crystalline structure. The growth mechanism of nanotubes was discussed.  相似文献   

13.
Dinitrogen (N2) and proton (H ),which act as physiological substrates of nitrogenase,are reduced on FeMo-co of the MoFe protein. However,researchers have different opinions about their exact reduction sites. Nitrogenases were purified from the wild type (WT) and five mutants of Azotobacter vinelandii (Av),including Qα191K,Hα195Q,nifV-,Qα191K/nifV- and Hα195Q/nifV-; and the activities of these en-zymes for N2 and H reduction were analyzed. Our results suggest that the Fe2 and Fe6,atoms closed to the central sulfur atom (S2B) within FeMo-co,are sites for N2 binding and reduction and the Mo atom of FeMo-co is the site for H reduction. Combining these data with further bioinformatical analysis,we propose that two parallel electron channels may exist between the 8Fe7S cluster and FeMo-co.  相似文献   

14.
Studies on the viscoelastic behavior of styrene[ethylene-(ethylene-propylene)] -styrene block copolymer (SEEPS) were carried out, and some characteristic viscoelastic parameters were calculated. The longest relaxation time was obtained through simulating the relaxation spectrum on the basis of a modified Baumgaertel-SchausbergerWinter (mBSW) model. The results revealed that there exists a “second plateau” in the low frequency region of the master curves. The reason for this phenomenon is attributed to the entanglement of macromolecular chains. It is suggested that the hard blocks, polystyrene, act as entanglement points, resulting in a topology restraint to the movement of macromolecular chains. Meanwhile, it is found that the horizontal shift factors (aT) vs temperature in the master curve could be fitted to the WiUiams-Landel-Ferry (WLF) equation and Arrhenius equation respectively and the flow activation energy (Ea) is 127.88 kJ/mol. In addition, the plateau modulus (GN) and entanglement molecule weight (Me) were calculated.  相似文献   

15.
Temperate forest surface soils at the varying distances from main trunks (e.g., Pinus koraiensis and Quercus mongolica) were used to study the effects of acetylene (C2H2) at low concentrations on nitrification, mineralization and microbial biomass N concentrations of the soils, and to assess the contribution of heterotrophic nitrification to nitrous oxide (N2O) emissions from soils. The use of acetylene at partial pressures within a range from 10 to 100 Pa C2H2 in headspace gas gave a significant decrease in N2O emission at soil moisture of c. 45% water-filled porosity space, and the decrease was almost the same in each soil after exposure of C2H2 at low concentrations. Heterotrophic nitrification could account for 21%―48% of total N2O emission from each soil; the contribution would increase with increasing distances from the Pinus koraiensis trunks rather than from the Quercus mongolica trunks. Under the experimental conditions, the use of C2H2 at low concentrations showed no significant influence on soil microbial biomass N, net N mineralization and microbial respiration. However, 100 Pa C2H2 in headspace gas could reduce carbon dioxide (CO2) emissions from soils. According to the rapid consumption of 10 Pa C2H2 by forest soils and convenience for laboratory incubations, 50 Pa C2H2 in headspace gas can be used to study the origin of N2O emissions from forest soils under aerobic conditions and the key associated driving mechanisms. The N2O and CO2 emissions from the soils at the same distances from the Quercus mongolica trunks were larger than those from the Pinus koraiensis trunks, and both emissions decreased as the distances from trunks increased. The stepwise regression analysis showed that 95% of the variability in soil CO2 emissions could be accounted for by the concentrations of soil total C and water soluble organic C and soil pH, and that 72% of the variability in soil N2O emissions could be accounted for by the concentrations of soil total N, exchangeable NH+4-N and microbial biomass N and 25% of the variability in heterotrophic nitrification by the soil microbial biomass N concentration. The emissions of N2O and CO2 from forest soils after exposure of C2H2 at low concentrations were positively related to the net nitrification of the soils.  相似文献   

16.
 采用硝酸氧化法制备氧化多壁碳纳米管(MWNTs-COOH),在其表面引入羧基.以对甲苯磺酸(PTSA)为催化剂、二甲亚砜(DMSO)为溶剂,采用羟丙基-β-环糊精(HP-β-CD)修饰MWNTs-COOH,制备了分散性较好的羟丙基-β-环糊精-多壁碳纳米管 (HP-β-CD-g-MWNTs)复合材料.经透射电镜(TEM)、傅里叶变换红外光谱(FT-IR)、热重分析(TGA)等测试后表明,HP-β-CD被成功接枝到多壁碳纳米管(MWNTs)表面.分散性研究结果表明,HP-β-CD-g-MWNTs复合材料在水溶液中的分散能力达到2.3mg/mL,这一属性使得该材料有望成为医学材料或药物载体材料.采用紫外-可见(UV-Vis)吸收光谱法研究扁桃酸与HP-β-CD-g-MWNTs复合材料的相互作用,结果表明扁桃酸可能通过π-π堆积、极性相互作用及氢键吸附在复合材料表面.基于上述分子间作用力的形成,与碳纳米管作用的分子可望实现从碳纳米管表面得到控制释放或缓释.  相似文献   

17.
采用溶剂热法在N,N-二甲基甲酰胺溶液中合成了不同摩尔比例的SrCl_2和Bi(NO_3)_3(分别为5%,10%,30%,50%,80%)与对苯二甲酸形成的含Sr~(2+)和Bi~(3+)有机杂化体,并在紫外可见光照射下对其进行了罗丹明B降解活性的评价.结果表明:杂化体在紫外可见光下对RhB降解活性良好,其中SrCl_2摩尔比例10%掺杂的催化剂光降解活性最佳,这归结于其在紫外区域对光有很好的吸收及光生电子和空穴能有效地分离.双金属离子能协同调节有机杂化体的光催化活性.  相似文献   

18.
Zn-doped titanium oxide (TiO2) nanotubes electrode was prepared on a titanium plate by direct anodic oxidation and immersing method in sequence. Field emission scanning electron microscopy (FESEM) showed that the Zn-doped TiO2 nanotubes were well aligned and organized into high density uniform arrays with diameter ranging from 50 to 90 nm. The length and the thickness were about 200 and 15 nm respectively. TiO2 anatase phase was identified by X-ray diffraction (XRD). X-ray photoelectronspectroscopy (XPS) indicated that Zn ions were mainly located on the surface of TiO2 nanotubes in form of ZnO clusters. Compared with TiO2 nanotubes electrode, about 20 nm red shift in the spectrum of UV-vis absorption was observed. The degradation of pentachlorophenol (PCP) in aqueous solution under the same condition (initial concentration of PCP: 20 mg/L; concentration of Na2SO4:0.01 mol/L and pH: 7.03) was carried out using Zn-doped TiO2 nanotubes electrode and TiO2 nanotubes electrode. The degradation rates of PCP using Zn-doped TiO2 nanotubes electrode were found to be twice and 5.8 times as high as that using TiO2 nanotubes electrode by UV radiation (400 μw/cm^2) and visible light radiation (4500 μw/cm^2), respectively. 73.5% of PCP was removed using Zn-doped TiO2 nanotubes electrode against 45.5% removed using TiO2 nanotubes electrode in 120 min under UV radiation. While under visible light radiation, the degradation efficiency of PCP was 18.4% using Zn-doped TiO2 nanotubes electrode against 3.2% using TiO2 nanotubes electrode in 120 min. The optimum concentration of Zn doping was found to be 0.909%. The PCP degradation efficiencies of the 10 repeated experiments by Zn-doped TiO2 nanotubes electrode were rather stable with the deviation within 3.0%.  相似文献   

19.
A novel supramolecular adduct [(H3O)2 (PtCl6)]3 (C42H42N28O14)2·H2O (1) was synthesized by mixing [PtCl6]2− and cucurbit [7] uril in solution of hydrochloric acid. The crystal structure was determined by single crystal X-ray diffraction analysis. The crystal belongs to orthorhombic system and space group F dd2 with cell dimensions:a=4. 705 33 (5) nm,b=7. 153 80 (6) nm,c=1. 894 61 (2) nm,Z=16,V=63, 7744 (11) nm3,D c =1.534 g/cm3, μ=3. 007 mm−1,F(000)=29 120,R 1=0.070 7,wR 2=0. 169 2. In crystal, the cucurb [7] uril molecules from two zig-zag chains. Foundation item: Supported by the National Natural Science Foundation of China (20172040) Biography: Yan kun (1977-), female, Master, research direction: macrocyclic chemistry.  相似文献   

20.
0 IntroductionPayrriodminaetiics hoenteer oofc ythcleics m .os tC oambupnoduanndts a cnodn tbaeisntin kgno twhnepyridine ring are widely distributedin nature,principally asenzymes and alkaloids . Pyridine enzymes have been foundintissues of all plants and ani mals examined thus far ,andare derivedfromeither nicotinic acid or Vitamin B6[1].Pyr-idine derivatives are also the building block of many phar-maceuticals with a wide range of functionalities that includeantitubercular compounds ,antivi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号