首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
水在金属镁表面吸附的第一原理研究   总被引:3,自引:2,他引:1  
采用第一性原理赝势平面波方法,通过Materials Studio软件中的castep模块,研究了水分子在Mg(0001)表面吸附行为,揭示了镁合金钝化机理。研究了水分子在Mg(0001)表面顶位T1、桥位B2、穴位H3、穴位F4吸附情况,重点研究水分子置于T1位置的3种情况,即:水分子平行镁表面T1p,水分子垂直表面T1v,水分子所在平面与镁表面有一定倾斜T1i。计算给出了吸附能、电荷密度、差分密度、水的键长键角,分析了结构的稳定性和原子间的成键情况。结果表明:水分子在Mg(0001)表面吸附时候,氧原子与表面成键,且在顶位吸附且吸附构型是倾斜时最稳定。吸附能为-0.429 3 eV(=-41.21 kJ/mol),并且吸附能大于40 kJ/mol,吸附为化学吸附。吸附过程中表面镁原子的电子向水分子转移,使镁表面电位向正方向移动,会使镁产生钝化。吸附使水分子键长增长,键角增大,即水中各原子间作用减弱,可与Mg形成水合分子或MgO、或Mg(OH)2,从而发生钝化。  相似文献   

2.
使用基于密度泛函理论(DFT)的Castep量子力学计算程序模块,对CHx(x=0~4)在γ-Al2O3(110D)表面吸附的位置,空间结构和能量进行了理论计算.计算结果表明,CHx(x=0~3)与表面形成强的相互作用.CH3,CH2物种处于表面八面体铝的正上方时,结构最为稳定;CH,C物种处在表面八面体铝和三配位氧的桥键位置时,体系的总能量最低.而CH4只与γ-Al2O3(110D)表面发生非常弱的相互作用,构成物理吸附.布居分析表明CHx(x=0~3)与表面作用时电子从表面向CHx转移.  相似文献   

3.
催化剂载体γ-Al2O3上NO对SO2的氧化吸附   总被引:3,自引:1,他引:2  
通过研究催化剂载体γ-Al2O3在423K吸附温度和不同气氛(有氧和无氧)下NO和SO2的吸附曲线、吸附量,以及漫反射红外光谱(DRIFTS)分析,探讨了低温下在γ-Al2O3上NO对SO2的氧化吸附的影响.研究表明,低温下在γ-Al2O3上NO对SO2氧化吸附有促进作用,γ-Al2O3晶格氧直接参与了NO促进SO2氧化的反应,NO促进SO2氧化吸附的机理是:γ-Al2O3吸附NO形成的表面螯合亚硝基与邻位弱吸附的Al-O-SO2发生表面反应,使弱吸附的Al-O-SO2氧化生成稳定的SO4^2-,并产生氧空位,放出NO,气相中的氧补充氧空位生成晶格氧,使表面反应得以继续进行。  相似文献   

4.
Tl在Si(111)面吸附特性理论研究   总被引:1,自引:1,他引:0  
Ⅲ族金属元素(如Al,Ga和In)在Si表面的吸附长期以来一直受到众多理论和实验研究者的关注,最近,该族最重的元素铊(Tl)在Si(111)面吸附的独特性质引起了人们的极大兴趣.通过低能电子衍射(LEED),Visikovskiy等人[1]发现Tl吸附在Si(111)表面时由于外加直流电压极性的转换表面结构在(1×1)和(√3×√3)之间存在可逆的结构改变,与Tl同族的In在表面电迁移后形成具有(4×1)结构的表面硅化物,是不可逆的.  相似文献   

5.
采用密度泛函理论DFT方法,建立煤大分子骨架模型,并以范德华力作用半径为边界条件,构建煤大分子对CH_4分子吸附的量子动力学模型,在6-311G++基组上对煤大分子骨架模型和吸附模型结构进行优化,通过密立根电荷量分析了煤大分子表面的吸附空位,以及甲烷气体分子从游离态到吸附态的物理结构和特性变化。研究结果表明,煤表面分子和甲烷分子之间的吸附力场主要是静电场,甲烷分子在吸附过程中被极化,产生电偶极矩,C-H分子键长增大,吸附质和吸附剂之间的范德华力主要是诱导力和色散力以及甲烷分子被极化后的取向力,煤大分子表面的吸附空位可以通过煤大分子中各原子的密立根电荷量分析定量确定,通过模型结构优化发现,同一吸附空位可以对应多种甲烷分子吸附平衡结构,煤对甲烷分子的吸附为多分子层吸附。  相似文献   

6.
为了阐明In的掺杂能提高SnO2(110)表面气敏性能的反应机制,采用密度泛函理论研究了NO2分子在In掺杂SnO2(110)表面的吸附行为. 计算结果表明:In的掺杂可以提高材料表面的导电性,形成具有氧空位的缺陷表面,有利于发生活性氧在表面的预吸附过程. 掺杂的In5c/SnO2(110)表面对NO2表现出良好的吸附性,对NO2气体的选择性和灵敏度提高的主要原因是In掺杂后氧空位缺陷表面的形成. 此外,活性氧物种的预吸附对材料表面气敏性能的影响取决于NO2在材料表面的具体吸附位点,其中Sn5c位点的吸附促使电荷从表面转移到气体分子,导致表面电阻的增大以及氧空位的产生,从而表现出优异的气敏吸附性能.  相似文献   

7.
利用从头算平面波赝势密度泛函理论方法研究了高压下L10-TiAl金属间化合物的结构和弹性性质.研究发现当压力在0~20 GPa范围内时,c/a的值基本上保持一常数1.02,与实验结果吻合.当压力在20~45 GPa范围内时,c/a的值随压力的增加从1.02线性减小到0.99.这表明在低压下沿c轴和沿a轴的压缩性是一样的,但是高压下沿c轴比沿a轴更容易压缩.计算了从0到20 GPa压力下L10-TiAl的弹性常数.同时我们还计算了剪切各向异性比率A和Voigt剪切模量,与实验结果和别人的计算结果相吻合.  相似文献   

8.
基于密度泛函理论和周期平板模型,通过Nt-T,Nt-T-O-T,Nt-B-O-T,Nt-B-Nc-T和Nt-T-Nc-T五种吸附结构研究了N2O分子在Pt(111)表面的吸附,发现Nt-T位是最稳定的吸附位,且吸附主要是通过末端Nt原子与表面作用.从吸附结构分析了N2O分子在Pt表面可能的解离过程.  相似文献   

9.
Mn,Nb对γ-TiAl价电子结构及性能的影响   总被引:1,自引:0,他引:1  
利用固体与分子经验电子理论计算了γ-TiAl及含Mn或Nb的γ-TiAl的价电子结构;利用价电子结构信息定义了表征合金相力学性能的相结构因子σN,F,ρLV与ρCV;利用相结构因子及键络的空间分布nα讨论了合金元素Mn和Nb对γ-TiAl价电子结构及力学性能的影响;计算结果及理论分析与实际的吻合,预示了利用合金元素的电子结构参数预测合金元素行为的可行性.  相似文献   

10.
研究了远程氧等离子体改性聚四氟乙烯(PTFE)的表面润湿性与表面结构的关系.用已知表面张力的液体测定接触角,采用Zisman曲线法求得试样的临界表面张力γ_C,利用扩展的Fowkes公式计算试样表面自由能γ_S及其分量γ_S~d(色散力)、γ_S~p(偶极矩力)和γ_S~h(氢键力)的变化,并与远程氧等离子体中活性物种的分布进行相关性分析.结果表明:氧等离子体处理的PTFE表面润湿性是由表面自由能中极性分量(γ_S~p+γ_~h),尤其是氢键力γ_S~h的大小决定的,而与表面能态没有特定关系;氧等离子体场中活性物种混合存在和较纯的高浓度自由基氛围均有利于极性分量(γ_S~p+γ_S~h)的增加,但表面自由能的变化则主要受电子、离子浓度的影响.X射线光电子能谱分析表明,经氧等离子体处理后,PTFE表面C-F键断裂形成的自由基与空气中的氧反应生成C-O和C-O活性基团,氧含量增大,使表面润湿性提高.  相似文献   

11.
为探究Mn(Ⅱ)在伊利石表面的吸附机理,采用密度泛函理论(DFT)模拟Mn(Ⅱ)在伊利石(001)面和(010)面的吸附,研究了活性位、吸附构型、电荷和态密度。结果表明:在(001)面,Mn(Ⅱ)优先吸附于硅氧环空穴处,且与活性氧OS1形成1个共价键,吸附能为-262.55 kJ/mol;在(010)面,Mn(Ⅱ)与羟基基团的氧原子形成1~3个共价键,随着共价键数量的增加,吸附能增大,吸附的最稳定构型为Mn(Ⅱ)吸附于3个≡Al—OH基团之间的空穴处,吸附能为-533.62 kJ/mol;Mn(Ⅱ)与(001)面和(010)面均存在共价键作用和静电作用,在(001)面的吸附能小于(010)面,且与(001)面以静电作用为主,与(010)面以共价键作用为主;Mn(Ⅱ)与伊利石表面共价键的形成主要是Mn(Ⅱ)的4s轨道与表面OS的2p轨道间的相互作用。研究结果可为黏土吸附材料的开发和污染土壤的净化提供理论基础。  相似文献   

12.
采用密度泛函理论计算分析了石墨烯的几种形式的缺陷及铂团簇与其结合的稳定构型,并使用该构型分析甲醇在铂上的吸附,与完美石墨烯表面吸附铂和甲醇的情况进行对比.结果表明:铂团簇在缺陷石墨烯表面的吸附强于在完美石墨烯表面的吸附,亦即缺陷石墨烯表面有一定的固定铂团簇的作用.石墨烯缺陷可以提高催化剂铂团簇的稳定性,防止烧结.此外,甲醇在缺陷石墨烯表面的吸附能力低于其在完美石墨烯表面的吸附能力,因其负载的铂与石墨烯表面的碳有较强的结合.  相似文献   

13.
通过计算机编程建立水吸附Al和Cu的模型,利用实空间的Recussion方法分别计算了Al和Cu被H2O吸附前后系统的状态密度和能量变化,及表面金属原子与其近邻原子间的键级积分,并将两个计算结果进行比较.从结果中分析,金属原子的电子转移到H2O分子的O原子上.水吸附金属表面后,状态密度有所下降,次表面原子几乎不受影响,系统总能降低,系统变稳定.H2O使金属表面化学活性降低,并从键级积分计算结果中讨论了Al和Cu钝化膜的形成机理:水通过氧与金属表面原子成键后,表面金属原子与次表面原子作用增强,水中氧和氢原子相互作用改变的不同导致形成不同的钝化膜.  相似文献   

14.
通过吸附量测试、纯矿物浮选、Zeta电位和XPS测试,研究辛基羟肟酸在氟碳铈矿表面的吸附行为和吸附机理。研究结果表明:辛基羟肟酸在氟碳铈矿表面吸附符合二级动力学模型,等温吸附过程符合Freundlich吸附模型,pH=9.5时辛基羟肟酸在氟碳铈矿表面的吸附速度和吸附量比pH=6.5时的大;辛基羟肟酸在氟碳铈矿表面的吸附为多层、不均匀吸附,是物理吸附和化学吸附共同作用的结果,但以化学吸附为主。吸附机理为:羟肟酸根阴离子OHA~-与氟碳铈矿表面暴露的Ce~(3+)发生螯合反应生成OHA-Ce沉淀,形成化学吸附;羟肟酸分子OHA与氟碳铈矿表面的氧以氢键形式形成物理吸附,同时,溶液中游离的羟肟酸分子OHA与氟碳铈矿表面已吸附上的OHA分子形成氢键和烃链间疏水缔合作用,产生不均匀的物理吸附。  相似文献   

15.
嵌段型超分散剂PSE是一种新型、高效分散剂.作者通过吸附等温线、红外光谱分析等测试手段及理论计算,研究了PSE在SiO2和滑石固/液界面的吸附特性及吸附形态.研究结果表明,PSE在SiO2表面发生了化学吸附,其作用模型为SiO2表面的-OH与PSE的硅醇基化学键合形成桥氧键;PSE在滑石解离面的主要吸附机理是PSE的硅醇基与滑石解理面上的氧原子形成氢键;当PSE浓度低时,超分散剂PSE在颗粒表面发生多位吸附,即锚固段和溶剂化段同时吸附在颗粒表面;当PSE浓度高时,超分散剂PSE锚固段卧式吸附在颗粒表面,溶剂化段伸入水中,属于单层吸附.  相似文献   

16.
采用密度泛函理论与周期平板模型相结合的方法,对物种C2Hx(x=4~6)在Co(111)表面的top、hcp、fcc和bridge位的吸附模型进行了结构优化、能量计算,得到了各物种较有利的吸附位;并对最佳吸附位进行密立根电荷和总态密度分析.结果表明:C2H6和C2H5在Co(111)表面的最稳定吸附位都是bridge位,吸附能分别是-89.39和-243.98 kJ.mol-1,而C2H4在Co(111)表面的最稳定吸附位top的吸附能是-128.22 kJ.mol-1;三物种与金属表面作用都较强,且有电荷转移,属于化学吸附.  相似文献   

17.
采用基于密度泛函理论(DFT)体系下的第一性原理平面波超软赝势方法,研究了sp3杂化气体分子H2O,NH3和CH4在金红石相Ti O2(110)表面的吸附.研究发现:含有氧空位的表面较无氧空位表面更容易吸附气体分子.影响吸附稳定性和吸附能的主要因素是分子的极化率,分子极化率越大,吸附越稳定.表面氧空位对分子负电荷中心的吸附是整个吸附的主要原因.通过差分电荷密度和电荷布居数分析来看,表面与吸附分子存在电荷转移,转移电子数目大小为:NOC,吸附方式为化学吸附,吸附稳定性为NH3H2OCH4.通过态密度、吸收谱和反射谱分析发现,表面氧空位缺陷使材料在费米能级附近出现了态密度峰值,极大地改变了材料的光学性质,占主导作用;而表面吸附H2O,NH3,CH4分子后对表面的光学性质影响相对较低,占辅助作用.O,N,C原子的电子在费米能级附近的态密度贡献为NOC,与转移电子数目顺序一致.相比氧空位表面,吸附CH4后对材料的光学性质影响不大,但吸附H2O和NH3后其吸收系数和反射率有所降低.这为进一步研究该材料的气敏传感特性提供了理论基础.  相似文献   

18.
表面吸附态活性氧物种如O~*、OH~*等对H_2O、CH_3OH、CH_4、NH_3所含O-H、C-H以及N-H键的活化有着十分重要的作用,其调控行为与催化剂的本身电子结构、氧物种的碱性以及A-H中H原子的酸性等有着非常密切的关系.通过表面吸附氧物种的修饰可以有效地控制A-H键的活化程度,从而达到调控反应的目的.利用40篇文献综述了近些年来理论科学工作者在该方面的研究成果,期望为实验工作提供有价值的理论指导依据.  相似文献   

19.
用热脱附谱研究了氧在银-铂合金(含Pt 9.7 at.%)表面上的化学吸附。结果表明:氧在合金表面上主要存在两种吸附状态,峰温为580±10K的二级脱附峰,与氧原子在合金表面Ag原子上的吸附相对应,脱附活化能E_d=213±15kJ/mol;峰温在660K左右的二级脱附峰,与合金表面Pt原子对氧的作用有关,脱附活化能为330~430kJ/mol,并随氧暴露量的增加而增大。  相似文献   

20.
研究了0.1 mol L -1 H2SO4中乙二醇在Pt电极和以吸附原子修饰的Pt (Pt/Sbad和Pt/Sad)电极上的吸附和氧化过程. 结果表明, 乙二醇的氧化与电极表面氧物种有着极其密切的关系. Pt电极表面Sb吸附原子能在较低的电位下吸附氧,可显著提高乙二醇电催化氧化活性. 与Pt电极相比较, Sb吸附原子修饰的Pt电极使乙二醇氧化峰电位负移了0.20 V, 峰电流增加了近3 倍. 相反,Pt电极表面S吸附原子的氧化会消耗表面氧物种,几乎完全抑制了乙二醇的电氧化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号