首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 515 毫秒
1.
电子约束效率为反映环尖型离子推力器放电性能的重要参数之一,一般采用原初电子的平均约束长度来表征。对于离子推力器,放电室长径比与磁体间距会影响磁场分布,进而影响电子约束效率。放电室长径比与磁体间距的最佳状况是原初电子在放电室中保持尽量长的时间。以二维轴对称的离子推力器放电室为几何模型,发展了计算原初电子运动情况的代码。通过求解Maxwell方程和电子运动方程得到磁场和电子的运动轨迹,从而得到原初电子的平均约束长度。对放电室长径比与磁体间距对原初电子约束性能的影响进行了参数化研究,总结了只考虑原初电子约束时放电室长径比与磁体间距的选取原则。  相似文献   

2.
20cm氙离子推力器磁场优化与试验研究   总被引:1,自引:0,他引:1  
放电室磁场的优化设计是离子推力器结构改进设计的关键技术之一,直接影响到推进剂电离效率和整机工作稳定性。针对深空探测等空间轨道任务对20 cm氙离子推力器应用需求,利用电磁体磁感应强度实时可调的优势,获得了给定工作模式下20 cm氙离子推力器放电室磁场最优构型及其磁感应强度的最佳分布。在此基础上,运用等效磁通理论,明确了产生相同磁场构型及其磁感应强度分布的永磁体结构尺寸。将20 cm氙离子推力器放电室磁场优化前后的性能进行对比,结果表明:在不改变整机结构的情况下,放电室磁场优化后推力可提升50%,由40 m N提高到60 m N,比冲提高到3 500 s,效率提高到65%。通过磁场优化,使得20 cm氙离子推力器具备了在40 m N和60 m N双模式工作的能力。研究为高效、稳定工作的离子推力器磁场优化提供方法。  相似文献   

3.
数值仿真研究电子回旋共振离子推力器放电室的放电过程可以为推力器的优化设计提供指导和帮助。基于COMSOL多物理场仿真软件建立了5 cm口径电子回旋共振(ECR)推力器放电室的二维轴对称模型。通过磁场实际测量值和仿真结果的对比分析,验证了模型的可靠性;并计算发现前极靴长度在7 mm和9 mm之间存在一个最佳特征值。当小于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率均随极靴长度的增大而增大;而当大于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率则随极靴长度的增大而减小。  相似文献   

4.
数值仿真研究电子回旋共振离子推力器放电室的放电过程可以为推力器的优化设计提供指导和帮助,本文基于COMSOL多物理场仿真软件建立了5cm口径ECR推力器放电室的二维轴对称模型。通过磁场实际测量值和仿真结果的对比分析验证了模型的可靠性,并计算发现前极靴长度在7mm和9mm之间存在一个最佳特征值,当小于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率均随极靴长度的增大而增大,而当大于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率则随极靴长度的增大而减小。  相似文献   

5.
脉冲等离子体推力器的性能受电气参数、结构设计参数等方面的影响.针对脉冲等离子体推力器效率低的问题进行了理论分析并设计实验进行了验证,研究了设计参数与推力器性能之间的关系.结果表明,推力与放电电流有密切的关系,而脉冲等离子体推力器的电极间距、放电能量等设计参数对推力、放电电流等又有较大的影响.实验结果对设计高性能的推力器有参考价值.  相似文献   

6.
为了分析射频离子推力器束流特性,基于二维流体模型对自研的11 cm射频离子推力器开展放电室等离子体数值模拟,获得给定电气参数下离子密度、电子温度等关键参数的分布特性;研究了等离子体参数和束流大小与射频功率间的函数关系;以等离子体参数和栅极参数为输入,基于离子光学系统模型获得不同工况下的单孔离子引出轨迹.研究结果显示:离子密度和电子温度分别沿放电室径向逐渐减小和增大,有利于获得更好的束流均匀性及更大的束流;束流大小与射频功率呈线性正相关关系,有利于实现束流连续精确可调;屏栅上游鞘层的形成与离子密度、离子种类、栅极电压组合相关,综合考虑以上因素获得最佳束流聚焦和引出特性.  相似文献   

7.
为了提升兰州空间技术物理研究所研制的一种5 k W霍尔推力器LHT—140的性能,采用ANSOFT软件进行了磁场优化设计,将磁场径向分量的轴向梯度提高了47%,相同励磁激励下放电通道中的磁场强度提高了38%。建立了一个R-Z平面内的二维particle-in-cell(PIC)等离子体模型,对磁场优化后推力器的性能进行了仿真分析,预估其在300~800 V放电电压、10~15 mg/s流率范围内,推力提升了9.6%~22.1%,效率提升了8.7%~19.3%。性能验证试验表明磁场优化后在相同放电电压与流率下,性能提升的测试值高于仿真值。  相似文献   

8.
利用静电探针对弱磁场中直流辉光放电等离子体参数进行了诊断,测量了等离子体的密度和温度.结果表明,离子密度随放电电流的增加而增加,随气压的升高而升高;电子温度随放电电流的增加而增加,随气压的升高而降低;在磁场中,离子密度随磁场的增强而增大,电子温度随磁场的增加而减小.实验结果与理论计算结果基本趋势相一致.  相似文献   

9.
引射器关键结构参数优化设计及验证   总被引:1,自引:0,他引:1  
引射器的性能受几何尺寸影响,相关设计方法给出的结果差异较大,存在设计点偏离严重的问题.针对小膨胀比煤层气气井引射需要,利用基于气体动力学理论的索科洛夫经验公式对引射器进行初步设计,并通过CFD方法对其关键结构尺寸进行数值优化,得到关键结构参数如喷嘴间距、混合室直径、混合室长度及扩压室长度等对引射器性能的影响规律.对比分析理论设计和模拟优化得到的引射器几何尺寸,发现CFD方法优化后的引射器等熵效率较理论设计高出13%左右,并通过实验验证引射器在偏离设计工况时,等熵效率急剧降低,表明数值模拟设计的引射器效率最高,在工程上为偏离设计工况的引射器设计提供了参考.  相似文献   

10.
采用MonteCarlo方法,模拟了磁场影响下矩形空心阴极放电中电子的运动及其产生非弹性碰撞情况,得到了终止条件下电子的能量分布、空间分布,以及离子的空间分布.磁场的引入改变了电子的行程和产生各种非弹性碰撞的次数与位置,影响了整个放电过程.电子的各种参数分布的差异,正是由少数非弹性碰撞决定的.通过模拟得到:在恰当的磁场强度下,可改变电子的位置和能量分布,使总的离化数增加,改变负辉区和阴极位降区的离子分布,这对于更有效地控制激励、溅射和转荷反应过程,稳定放电有一定的指导意义.  相似文献   

11.
在离子源的设计中,为了减少等离子体的器壁复合损失,经常采用磁场对等离子体进行约束;但磁场分布的复杂性,给实际测量带来了困难。介绍采用磁荷法对低能辐照离子源中磁场分布进行计算,给出了计算结果,并讨论了误差可能产生的原因及其影响。计算结果对于离子源设计中的阴极热电子发射、离子束有效引出面积确定体的有效约束等重要问题有一定参考价值。  相似文献   

12.
以数值模拟手段研究作为水下机器人主要姿态与轨迹控制机构的导管螺旋桨在回转状态下的水动力特性。首先根据所要计算的导管螺旋桨的几何要素构造导管和螺旋桨的三维几何模型,在此基础上采用动网格技术以计算流体力学方法借助计算流体力学软件Fluent,采用有限体积法在导管和螺旋桨所在的流域内求解其N-S方程以此对在作回转运动的水下机器人流场作用下导管螺旋桨以一定转速和一定来流方向下所产生的推力特性进行数值模拟分析,观察在水下机器人主体流场干扰下螺旋桨推进器的水动力现象。为验证所采用的预测导管螺旋桨水动力特性数值方法的有效性,在Ka 4-70/19A标准导管螺旋桨已有实验数据的基础上,将数值模拟结果与试验结果进行比较,对比结果表明本文所采用的数值方法是可靠的。  相似文献   

13.
电子回旋共振放电产生的等离子体在微电子工业中材料加工、空间电推进方面有着广泛的应用。为了研究微波等离子体电子回旋共振的放电特性,使电子回旋共振放电产生的等离子体密度和能量转换效率更高,建立了微波等离子体电子回旋共振放电的1D3V模型,描述了带电粒子在外加静磁场、微波场共同作用下的微观运动。结果表明:微波频率为2.45 GHz时,随着静磁场磁感应强度的增加,平均电子能量先持续增大达到峰值,随后又不断地减小,且在0.087 5 T时电子加速效果最明显,结果符合电子的回旋频率公式,验证了该模型的正确性;共振区域内,发现在0.087 5 T磁感应强度下,微波频率为2.45 GHz下拟合的电子速度分布才与微波电场分布趋势相似,说明微波电场推动了电子运动。这为进一步研究微波等离子体放电的粒子模拟-蒙特卡罗碰撞模拟奠定了基础,也为进一步研究微波等离子体源中粒子产生效率及微波等离子体源的物理性质提供了重要参考。  相似文献   

14.
采用箍缩反射离子二极管,使阴极发射的电子多次穿过阳极膜并向轴线箍缩,增加了它在二极管中的平均渡越时间,从而提高了离子流产生效率。根据顺位流模型。设计了200kV强流脉冲离子束加速器的箍缩反射离子二极管,得到了峰值为1.6kA,脉宽约20ns的离子束流。  相似文献   

15.
结合颗粒运动方程和一些合理的假设,计算了多管旋风分离器的进气室模型内颗粒运动轨迹,从中总结出进气室内颗粒惯性分离的规律,建立了惯性分离模型.提出惯性分离效率的计算方法.用加粉实验对惯性分离效率进行验证。实测值与计算值较为吻合.  相似文献   

16.
推导了同时考虑电阻率与磁导率变化的大地电磁二维方程,并应用有限单元法进行数值模拟.为了提高计算精度与效率、简化计算节点生成,采用格林定理处理二次场方程源项,并设计实现了一种基于二叉树结构的收缩网格剖分算法;采用基于最少填入元思想的稀疏矩阵符号分析方法,实现了稀疏线性方程组的LDLT求解.利用二次场算法进行模型试算,结果表明所采用的新计算方法大大减少了计算单元数量,提高了计算精度与效率.  相似文献   

17.
Electron dynamics in collisionless magnetic reconnection   总被引:1,自引:0,他引:1  
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号