首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
MEVVA离子源等离子体密度测量   总被引:2,自引:1,他引:2  
采用静电探针方法测量了MEVVA离子源中的等离子体,得到了单探针,双探针的特性曲线,等离子体电子温度和等离子体离子密度以及离子密度随离子源轴向的变化和径向分布。其中离子密度随离子源径向的分布近似为高斯分布,还研究了等离子体密度与弧流的关系,并采用加会切磁场的方法试图改善等离子体密度的径向分布的均匀性,得到了一些有益的结果。  相似文献   

2.
激光等离子体极紫外光源中的碎屑问题影响极紫外光源的稳定性及光源输出效率。针对该问题,研究了磁场对Nd:YAG激光Sn等离子体特性及极紫外辐射特性的影响,并且在0.6 T的磁场作用下,对激光等离子体光源中产生的离子碎屑进行了详细的对比研究。结果表明,外加0.6 T磁场可以有效减缓离子碎屑;由于磁场的约束,发射光谱也比未加磁场前有明显增强,计算得到的同时刻的电子密度是未加磁场的2.5倍;同时,探测到的极紫外辐射光谱并未受到磁场的影响。  相似文献   

3.
通过分析磁场对磁控溅射过程的影响,总结出了矩形平面直流磁控溅射装置工作区域磁场的设计原则,并给出了两种磁体结构.采用有限元方法对一套装置的磁场进行了计算,磁场计算结果与测量值吻合较好.基于上述分析计算,研究了磁场分布对靶材刻蚀形貌的影响,并进一步提出了具体的磁场改进措施.采用分流条垫补方法可以改进磁场分布,如果磁场水平分量呈马鞍形分布,靶材的利用率可以提高,采用磁极斜面结构对磁场分布的改进意义不大.另外,错开磁体间安装接缝和对永磁体精确充磁能够有效提高工作区域磁场分布的均匀性.  相似文献   

4.
螺线管中磁场的计算   总被引:1,自引:0,他引:1  
首先根据单层、有限长螺线管轴向磁场的计算公式,推导出多层、有限长轴向磁场的计算公式。并将它们推导到无限长的情形。其次采用谢尔茨展开公式计算空间的磁场分布。利用计算机编制出磁场计算程序、最后利用此程序进行计算机模拟,计算出磁场的轴向分布和空间分布。同时,对磁场的分布结果进行了讨论。  相似文献   

5.
设计了一个外斯型电磁铁,采用有限元方法对其磁场强度进行了三维模拟。推导了极头的设计方法,并计算了不同气隙间距和不同线圈电流条件下的磁场分布。结果表明,采用有限元模拟后的磁场比用简单磁路方法计算的结果更加准确。  相似文献   

6.
本文采用有限元数值计算方法对直线电机电磁机构部分进行磁场计算,阐述磁场的分布状况,并在此基础上,计算直线电机的电磁吸力,对磁场计算与磁路计算作了比较分析。  相似文献   

7.
利用三维有限元法计算爪极电机的磁场分布   总被引:3,自引:0,他引:3  
爪极电机的设计是比较复杂的问题 ,因为其转子结构和磁场分布呈三维性 ;而爪极电机的磁场计算又是分析、设计爪极电机的基础 ,它对于爪极电机的参数计算、性能设计和采用永磁材料设计新型混合式爪极电机都具有十分重要地意义。文章阐述了用三维有限元法计算爪极电机磁场的一般性原理 ,通过三维场数值计算 ,对一台 3 5 A传统结构汽车用爪极发电机的磁场分布进行了计算和分析 ,并对该电机转子中引入永磁磁钢的改进型发电机进行了分析 ,其结果对于设计新型爪极电机具有一定的参考价值。  相似文献   

8.
利用静电探针对弱磁场中直流辉光放电等离子体参数进行了诊断,测量了等离子体的密度和温度.结果表明,离子密度随放电电流的增加而增加,随气压的升高而升高;电子温度随放电电流的增加而增加,随气压的升高而降低;在磁场中,离子密度随磁场的增强而增大,电子温度随磁场的增加而减小.实验结果与理论计算结果基本趋势相一致.  相似文献   

9.
将等离子体填充的螺旋线慢波结构置于一纵向有限磁场中,考虑到磁化等离子体和介质的作用,该系统沿径向分为两个区域.采用螺旋导电面模型,利用已导出的慢波结构色散方程,数值计算了在不同的等离子体密度和磁场强度条件下,螺旋线慢波结构的色散特性,并对数值计算的结果进行了详细的分析.  相似文献   

10.
提出了外加控制磁场减少轨道电极烧蚀的方法,计算了试验条件下外加控制磁场的大小和空间分布,外加磁场线放在等离子体电枢电弧运动加速的起始段,控制磁场增加了电磁推力,加速了电弧斑点和运动,从而达到减轻烧蚀的目的。  相似文献   

11.
电子回旋共振放电产生的等离子体在微电子工业中材料加工、空间电推进方面有着广泛的应用。为了研究微波等离子体电子回旋共振的放电特性,使电子回旋共振放电产生的等离子体密度和能量转换效率更高,建立了微波等离子体电子回旋共振放电的1D3V模型,描述了带电粒子在外加静磁场、微波场共同作用下的微观运动。结果表明:微波频率为2.45 GHz时,随着静磁场磁感应强度的增加,平均电子能量先持续增大达到峰值,随后又不断地减小,且在0.087 5 T时电子加速效果最明显,结果符合电子的回旋频率公式,验证了该模型的正确性;共振区域内,发现在0.087 5 T磁感应强度下,微波频率为2.45 GHz下拟合的电子速度分布才与微波电场分布趋势相似,说明微波电场推动了电子运动。这为进一步研究微波等离子体放电的粒子模拟-蒙特卡罗碰撞模拟奠定了基础,也为进一步研究微波等离子体源中粒子产生效率及微波等离子体源的物理性质提供了重要参考。  相似文献   

12.
基于有限元法,对溅射离子泵抽气单元内气体放电及离子输运过程进行了研究.采用商业软件COMSOL Multiphysics将等离子体模块、磁场模块、带电粒子追踪模块进行耦合,计算得到阳极筒内电子密度的分布规律.研究了气体压强、阳极电压、磁场强度等参数对电子密度的影响,追踪了离子在不同压强下的运动轨迹,得到了离子对阴极板的入射角度和冲击能量.将仿真结果代入到理论抽速计算公式中,所得结果与实验数据进行对比,两者具有很好的一致性,验证了仿真模型的准确性.对离子泵结构设计和性能优化提供了一种适用方法.  相似文献   

13.
数值仿真研究电子回旋共振离子推力器放电室的放电过程可以为推力器的优化设计提供指导和帮助,本文基于COMSOL多物理场仿真软件建立了5cm口径ECR推力器放电室的二维轴对称模型。通过磁场实际测量值和仿真结果的对比分析验证了模型的可靠性,并计算发现前极靴长度在7mm和9mm之间存在一个最佳特征值,当小于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率均随极靴长度的增大而增大,而当大于特征值时电子密度最大值、平均电子密度值和等离子体吸收功率则随极靴长度的增大而减小。  相似文献   

14.
电子约束效率为反映环尖型离子推力器放电性能的重要参数之一,一般采用原初电子的平均约束长度来表征。对于离子推力器,放电室长径比与磁体间距会影响磁场分布,进而影响电子约束效率。放电室长径比与磁体间距的最佳状况是原初电子在放电室中保持尽量长的时间。以二维轴对称的离子推力器放电室为几何模型,发展了计算原初电子运动情况的代码。通过求解Maxwell方程和电子运动方程得到磁场和电子的运动轨迹,从而得到原初电子的平均约束长度。对放电室长径比与磁体间距对原初电子约束性能的影响进行了参数化研究,总结了只考虑原初电子约束时放电室长径比与磁体间距的选取原则。  相似文献   

15.
采用MonteCarlo方法,模拟了磁场影响下矩形空心阴极放电中电子的运动及其产生非弹性碰撞情况,得到了终止条件下电子的能量分布、空间分布,以及离子的空间分布.磁场的引入改变了电子的行程和产生各种非弹性碰撞的次数与位置,影响了整个放电过程.电子的各种参数分布的差异,正是由少数非弹性碰撞决定的.通过模拟得到:在恰当的磁场强度下,可改变电子的位置和能量分布,使总的离化数增加,改变负辉区和阴极位降区的离子分布,这对于更有效地控制激励、溅射和转荷反应过程,稳定放电有一定的指导意义.  相似文献   

16.
通过采用加会切磁场、增大离子源阴极与阳极距离并限制源等离子体发射角,从而使源阳极电位高于等离子体电位和采用改变源阳极结构──仅用阳极筒──从而改变弧放电路径这3种方法,对改善MEVVA源引出离子束流密度分布的均匀性进行了初步的研究。第3种方法从根本上改变了MEVVA源引出束分布的高斯分布特性,在合适的条件下可能得到更为均匀的束流密度分布。  相似文献   

17.
为了提升兰州空间技术物理研究所研制的一种5 k W霍尔推力器LHT—140的性能,采用ANSOFT软件进行了磁场优化设计,将磁场径向分量的轴向梯度提高了47%,相同励磁激励下放电通道中的磁场强度提高了38%。建立了一个R-Z平面内的二维particle-in-cell(PIC)等离子体模型,对磁场优化后推力器的性能进行了仿真分析,预估其在300~800 V放电电压、10~15 mg/s流率范围内,推力提升了9.6%~22.1%,效率提升了8.7%~19.3%。性能验证试验表明磁场优化后在相同放电电压与流率下,性能提升的测试值高于仿真值。  相似文献   

18.
Electron dynamics in collisionless magnetic reconnection   总被引:1,自引:0,他引:1  
Magnetic reconnection provides a physical mechanism for fast energy conversion from magnetic energy to plasma kinetic energy. It is closely associated with many explosive phenomena in space plasma, usually collisionless in character. For this reason, researchers have become more interested in collisionless magnetic reconnection. In this paper, the various roles of electron dynamics in collisionless magnetic reconnection are reviewed. First, at the ion inertial length scale, ions and electrons are decoupled. The resulting Hall effect determines the reconnection electric field. Moreover, electron motions determine the current system inside the reconnection plane and the electron density cavity along the separatrices. The current system in this plane produces an out-of-plane magnetic field. Second, at the electron inertial length scale, the anisotropy of electron pressure determines the magnitude of the reconnection electric field in this region. The production of energetic electrons, which is an important characteristic during magnetic reconnection, is accelerated by the reconnection electric field. In addition, the different topologies, temporal evolution and spatial distribution of the magnetic field affect the accelerating process of electrons and determine the final energy of the accelerated electrons. Third, we discuss results from simulations and spacecraft observations on the secondary magnetic islands produced due to secondary instabilities around the X point, and the associated energetic electrons. Furthermore, progress in laboratory plasma studies is also discussed in regard to electron dynamics during magnetic reconnection. Finally, some unresolved problems are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号