首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
锂硫(Li-S)电池因高理论能量密度在众多新型电池中受到广泛关注,但存在硫正极导电性差、多硫化物的穿梭等问题,制约其商业应用。针对上述问题,本次试验制备苘麻基生物碳(AC),通过熔融扩散法与升华硫(S)复合形成碳/硫复合材料(AC@S),并使用碳涂层法在正极材料表面涂覆多壁碳纳米管(MWCNTS)作为Li-S电池正极片与隔膜之间的夹层,进一步抑制多硫化物的溶解和扩散,阻止穿梭效应,减小活性物质的损失,提高Li-S电池的容量和循环性能。AC@S+MWCNTs电池首次放电容量为1 242.8 mAh·g-1,循环150次后仍保持982.4 mAh·g-1,相同条件下比AC@S高出275.0 mAh·g-1。将MWCNTS涂层与正极材料结合设计工艺简单,成本低,且可提高材料导电性、抑制多硫化物的穿梭效应,表现出良好的循环性能和库伦效率,是一种解决Li-S电池穿梭效应的有效途径。  相似文献   

2.
首先采用工艺较为简单的溶剂热法制备Fe3O4材料,对其进一步修饰后可得到Fe3O4/GO复合材料,最后通过化学共沉淀法制备得到具有磁性的纳米材料Fe3O4/GO/ZnO,并将该材料用于盐酸土霉素的吸附研究中。考察了盐酸土霉素的起始浓度、pH以及吸附剂的用量等因素对盐酸土霉素吸附效果的影响,还考察了纳米材料的再生循环次数及最大吸附量。结果表明:盐酸土霉素起始浓度为18 mg/L,pH值为3,材料用量为0.003 2 g等最佳条件下,该材料的最大吸附量达到191.93 mg/g,前再生3次吸附量保持在150 mg/g左右,故制备的Fe3O4/GO/ZnO磁性纳米材料对盐酸土霉素具有较好的吸附能力和稳定性。  相似文献   

3.
为了提高LiFePO4正极材料的离子导电性,采用液相共沉淀法与碳热还原法制备一系列质量配比的LiFePO4/Li3V2(PO4)3复合材料,通过X-射线衍射、扫描电镜、恒流充放电测试仪等分析测试手段测试样品。研究发现,m(LiFePO4):m(Li3V2(PO4)3)=6:4时复合材料形貌较为规则且结晶度较高,在0.1C,1.0C,2.0C,5.0C,10.0C倍率下放电比容量可达148,136,130.5 ,121.5,112.3 mA·h·g-1,1C倍率下循环100次容量保持率仍可达98.5%,有效地解决了LiFePO4离子电导率低的问题,推动了该复合正极材料在动力型锂离子电池中的应用。  相似文献   

4.
为了提高LiFePO4正极材料的离子导电性,采用液相共沉淀法与碳热还原法制备一系列质量配比的LiFePO4/Li3V2(PO4)3复合材料,通过X-射线衍射、扫描电镜、恒流充放电测试仪等分析测试手段测试样品。研究发现,m(LiFePO4):m(Li3V2(PO4)3)=6:4时复合材料形貌较为规则且结晶度较高,在0.1C,1.0C,2.0C,5.0C,10.0C倍率下放电比容量可达148,136,130.5 ,121.5,112.3 mA·h·g-1,1C倍率下循环100次容量保持率仍可达98.5%,有效地解决了LiFePO4离子电导率低的问题,推动了该复合正极材料在动力型锂离子电池中的应用。  相似文献   

5.
通过将金纳米粒子(AuNPs)电沉积在Fe3O4@MoS2修饰的电极上制备了一种新型的电化学传感器,该修饰材料是以二硫化钼(MoS2)为基底,采用一锅法将四氧化三铁微粒(Fe3O4 NPs)负载在MoS2上。Fe3O4@MoS2纳米复合材料独特的化学结构和较高的比表面积能有效促进AuNPs的后续吸附,有效增强检测多巴胺的灵敏度。AuNPs与Fe3O4@MoS2纳米复合材料之间的协同作用还弥补了MoS2电导率的不足,提高了传感器的灵敏度和稳定性。本文成功开发了一种灵敏度高,选择性好的多巴胺(DA)检测方法,能够准确检测DA的有效线性范围为15μmol/L~750μmol/L,检出限为8μmol/L (S/N=3)。运用循环伏安法(CV)和差分脉冲伏安法(DPV)实现了对人体血清样品中多...  相似文献   

6.
采用水热法制备了Fe3O4纳米粉体,并与Bi-BiOBr纳米材料进行了复合,成功的得到了Fe3O4/Bi-BiOBr复合纳米粉体。采用X射线衍射仪、场发射扫描电子显微镜、傅里叶红外光谱仪等仪器对样品进行了表征。结果表明,Fe3O4/Bi-BiOBr复合纳米材料被成功合成;在复合材料活化PMS去除罗丹明B (RhB)的降解试验中,考察了Fe和Bi的原子质量比(m(Fe):m(Bi))、催化剂质量浓度、PMS质量浓度等因素对光催化性能的影响。结果表明,光反应80 min后,降解率均达到95%以上;经过5次循环试验后,降解率仍能达到92.12%,具有良好的稳定性;催化过程中·OH为主要活性物种,其次为SO-4·和h+。  相似文献   

7.
利用化学刻蚀后得到的MXene (MX)片层具有大量阴离子官能团的特点,采用喷雾干燥技术,设计并合成了钒离子改性MXene(MX-VN)材料用于锂硫电池正极。MXene的优异导电性可以提高硫正极整体的导电性,同时原位构建的MX-VN界面可以提高对多硫化物的吸附效果和催化能力,提高硫的利用率。实验结果表明,采用MX-VN/S为正极的锂硫电池在0.1 C下的放电容量高达1438 mAh/g,且在0.5 C下循环200次以后容量保持率高达77.5%,电池性能明显提升。  相似文献   

8.
使用动态反应釜制备得到磁性粒子,与静态反应釜相比单次制备量提高20倍;通过扫描电子显微镜(SEM)、傅立叶红外光谱(FT-IR)、X射线衍射(XRD)、振动样品磁强计(VSM)等手段对产物进行表征,证明获得了粒径200 nm左右的单分散Fe3O4粒子,并具有超顺磁性;对其表面进行SiO2包覆,获得具有良好分散性的Fe3O4@SiO2粒子。研究发现Fe3O4@SiO2对DNA提取具有可重复利用性,并且质粒DNA吸附到Fe3O4@SiO2上后可直接加入聚合酶链式反应(PCR)体系作为扩增模板。  相似文献   

9.
采用溶剂热法合成了分散性良好的Fe3O4粒子,然后将油酸修饰到Fe3O4粒子表面,再通过疏水作用进行十六烷基三甲基氯化铵(CTAC)包覆,得到Fe3O4@CTAC粒子。采用扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、X射线衍射(XRD)、Zeta电位和振动样品磁强计(VSM)对Fe3O4@CTAC粒子进行了表征,结果表明:Fe3O4粒子表面包覆CTAC后粒径无明显变化,并且仍保持良好的单分散性;Fe3O4@CTAC粒子具有超顺磁性和良好的磁响应性能;Fe3O4@CTAC粒子的Zeta电位较高,分散体系具有较好的稳定性。对Fe3O4@CTAC粒子进行了抗菌性能及磁分离去除菌体测试,结果显示:当Fe3O...  相似文献   

10.
Sch/Fe3O4/ZSM-5复合光催化剂通过化学浸渍法制备,并用于活化H2O2去除甲基橙.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)、X射线衍射分析(XRD)、傅里叶变换红外光谱(FT-IR)以及比表面积分析(BET)对Sch/Fe3O4/ZSM-5进行形貌和结构表征.考察了溶液初始pH、H2O2浓度、Sch/Fe3O4/ZSM-5投加量对UV/Sch/Fe3O4/ZSM-5/H2O2体系去除甲基橙的影响.结果表明,当甲基橙初始质量浓度为10 mg·L-1、初始pH为3、H2O2浓度为3 mmol·L-1、Sch/Fe3O...  相似文献   

11.
为提高Bi负极材料的循环性能,提出了一种Bi/Bi2O3碳纳米复合纤维(Bi/Bi2O3-CNFs)的合成方法。以Bi2S3纳米棒为模板,采用静电纺丝技术及后续高温热处理方法成功合成了具有纵孔结构的Bi/Bi2O3(w)-CNFs。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)、透射电子显微镜(TEM)和X-射线光电子能谱(XPS)对复合材料进行了表征。讨论了不同质量分数的Bi2S3对复合材料结构以及电化学性能的影响。结果表明:当添加8.7%(质量分数)的Bi2S3时,合成的Bi/Bi2O3(8.7%)-CNFs拥有最佳的电化学储锂性能。当充放电电流密度为0.1 A/g时,Bi/Bi2O3(8.7%)-CNFs复合材料首次放电比容量可达到806 mA·h/g,并能稳定循环1 000次,即使在5.0 A/g的大电流密度下,储锂容量仍有147 mA·h/g。Bi/Bi2O3(8.7%)-CNFs复合结构改善了充放电过程的动力学性能,提高了电化学性能。碳纤维及内部纵孔结构缓解了充放电过程中电极材料的体积膨胀,增强了电池的循环稳定性。  相似文献   

12.
立方尖晶石结构的Li2ZnTi3O8(LZTO)具有成本低和安全性高的优势,被认为是代替碳材料作为锂离子电池负极材料的理想选择。然而,Li+和Zn2+离子位于LZTO的四面体位点,在一定程度上阻碍了离子的迁移,导致LZTO电导率差,锂离子扩散系数低。LiAlO2的包覆有效避免了电极表面与有机电解质的接触,从而减少了副反应的发生。因此,本文采用简单的高温固相法合成了Li2ZnTi3O8@LiAlO2复合材料。结果表明:LiAlO2改性未改变LZTO的形貌和粒径,但是提高了其结构稳定性、锂离子脱嵌的可逆性和电化学活性,促进了锂离子的迁移。Li2ZnTi3O8@LiAlO2 (8wt%)在0.5 C、1 C、2 C、3 C和5 C时的充电容量分别为203.9、194.8、187.4、180.6和177.1 mAh·g?1,表现出良好的倍率性能。然而,在相同的倍率下,纯LZTO仅有134.5、109.7、89.4、79.9和72.9 mAh·g?1的容量。即使在较大的充放电倍率下,Li2ZnTi3O8@LiAlO2(8wt%)材料也表现出良好的循环性能。在5 C倍率循环150次后后,Li2ZnTi3O8@LiAlO2(8wt%)仍具有263.5/265.8 mAh·g?1的充放电容量。LiAlO2的引入增强了LZTO材料的电子导电性,使Li2ZnTi3O8@LiAlO2复合材料具有优异的电化学性能。  相似文献   

13.
Fe3O4磁性纳米粒子是目前应用最为广泛的磁性纳米材料,相比于其他材料而言,其制备过程简单、化学稳定性好、储存方便、成本低廉,且容易实现磁性分离。Fe3O4磁性纳米粒子表面容易被修饰大量的含氧官能团,使其易于和其他基团连接,因此具有极大的功能化潜力。经过功能化的Fe3O4磁性纳米粒子具有很高的饱和磁化率以及极好的超顺磁性,从而被广泛用作水体处理过程中吸附剂、催化剂等的基质材料。本文综述了近年来具有代表性的功能化Fe3O4磁性纳米材料,列举了一系列功能化Fe3O4磁性纳米材料的制备方法以及它们在去除水体中的有机物、重金属离子、染料、抗生素等污染物方面的应用,并对磁性纳米材料在实际应用中面临的问题进行了总结和分析。  相似文献   

14.
取电阻炉实验和热重分析等手段,探讨了Fe-Ni-O体系中不同条件下的产物组成及Fe/Ni的还原行为.结果表明:五种样品的还原难度由低到高依次为NiO2O3+Ni2O3+NiO2O42O3;Ni元素能够促进铁氧化物还原,其促进作用由Ni元素的初始状态决定,单质Ni>氧化物NiO>NiFe2O4中的Ni;NiFe2O4的还原过程中各产物由低温到高温依次出现的次序为Fe3O4、Ni、(Fe,Ni)、Fe和Fe0.64Ni0.36.根据实验结果,对五种氧化物体系的还原过程进行了探讨,并获得了活化能、控速环节等重要参数及相关反应机理.  相似文献   

15.
采用水热法制备了Fe3O4纳米粉体、硅藻土负载纳米Fe3O4二元催化剂(Fe3O4@D),并与BiOBr粉体进行了复合,成功合成了BiOBr/Fe3O4@D复合纳米粉体。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、傅里叶变换红外光谱仪(FTIR)等仪器对3种催化剂进行了表征,并用制得的催化剂光降解罗丹明B(RhB)。结果表明,3种催化剂均被成功合成;在3种催化剂中,Fe3O4粉体呈球状,且BiOBr/Fe3O4@D直径处于纳米级;在光催化降解RhB的试验中,BiOBr/Fe3O4@D复合纳米粉体的催化性能最好。进一步考察了BiOBr/Fe3O4@D三元催化剂的投加量、PMS质量浓度、初始pH等因素对其光催化性能的影响。结...  相似文献   

16.
回收钢渣中的铁(Fe)和磷(P),不仅可以减轻钢渣堆积带来的环境负担,而且是钢铁工业发展循环经济、实现可持续发展的必由之路。本文旨在通过研究B2O3改质钢渣中富铁相(Fe3O4)和富磷相(Ca10P6O25)的结晶动力学规律确定Fe3O4与Ca10P6O25晶体可控生长的温度制度。本研究采用高温激光共聚焦扫描显微镜(CLSM)在线观测CaO–SiO2–FeO–P2O5–B2O3熔体的结晶行为,使用经典的结晶动力学理论计算Fe3O4与Ca10P6O25晶体的形核和长大速率。研究结果表明,CaO–SiO2–FeO–P2O5–B2O3熔体在冷却过程中初晶相Fe3O4析出温度范围为1300–1150°C,棒状的第二相Ca10P6O25在1150–1000°C温度区间内析出,且Fe3O4相的结晶能力大于Ca10P6O25相。综合考虑Fe3O4相与Ca10P6O25相的形核与长大速率,最终确定两相选择性结晶长大的最佳温度区间为(1055 ± 25)°C,即在1080–1030°C温度范围内对CaO–SiO2–FeO–P2O5–B2O3熔体进行缓慢冷却有利于Fe3O4与Ca10P6O25晶体的结晶长大,从而为后续从渣中选择性分离Fe3O4相与Ca10P6O25相创造了必要条件。  相似文献   

17.
以无水乙醇为溶剂,醋酸锂、钛酸丁酯和石墨为原料,采用湿法制备了Li4Ti5O12/石墨复合材料.采用X-射线衍射、红外光谱、扫描电镜和电化学测试等对合成产物进行了表征.结果表明:600 ℃氩气气氛中煅烧6 h可制得碳质量分数5%左右的Li4Ti5O12/石墨复合材料,其可逆容量达到167.1 mAh·g-1;经80次循环后,0.1C放电时,容量保持率为99.0%,2.0 C放电时容量保持率达到105.1%.与纯Li4Ti5O12相比,Li4Ti5O12/石墨复合材料具有更好的循环性能和倍率性能,是一种优良的锂离子电池负极材料.  相似文献   

18.
通过反相微乳液法制备四氧化三铁纳米颗粒(Fe3O4 NPs),并用硅烷偶联剂KH570对其改性,以期在Fe3O4 NPs表面引入C==C双键,再利用引入的C==C双键与三硫代十二烷酸-2-氰基异丙酯(RAFT试剂)进行反应,得到RAFT试剂化的Fe3O4 NPs(Fe3O4-g-KH570-RAFT NPs),并对不同阶段的Fe3O4 NPs产物的结构与形貌等进行表征.研究中以RAFT试剂接枝率(GrRAFT)为指标,考察了反应时间等工艺条件对GrRAFT的影响.结果表明:制备的Fe3O4-g-KH570-RAFT NPs的平均粒径为10.4 nm,当反应时间为14 h,反应温度为65 ℃,nKH570/nRAFT为1/2时,接枝率GrRAFT最高达到79.34%.  相似文献   

19.
在二次电池中,锂硫电池作为以硫为正极活性物质的电池形态,它具有原料环保且相对于其他传统材料更高比容量的特点。针对锂硫电池硫导电性差、膨胀率较大且充放电过程形成的多硫化锂易溶于电解液形成"穿梭效应"的不足,设计了一种以锂盐改性累托石为硫的宿主,碳硫复合的正极材料来改善锂硫电池的电化学性能。经测试,锂盐改性可以较大程度地疏通累托石的层间和孔道结构,增大比表面积和孔容,从而扩大硫在孔道中的负载空间,同时锂离子大量富集于材料中能有效提高充放电中离子和电子的传输。该改性正极复合材料在0. 1 C倍率下首圈循环充放电比容量为877 mAh/g,60圈后比容量衰减为653 mAh/g,容量保有率为74. 5%,说明材料中的成分能有效吸附多硫化物、抑制穿梭效应,使材料具有较好的循环稳定性。在电流密度0. 1、0. 2、0. 5、1 C下平均比容量分别为850、750、600和500 mAh/g左右,表现出良好的倍率性能。其电荷转移阻抗为63Ω,有利于电子电荷的传导。  相似文献   

20.
为揭示纳米材料原位覆盖对表层沉积物重金属的影响规律,开展室内培养原位沉积物柱试验,利用微界面分析技术、高分辨率平衡式间隙水采集技术(HR-Peeper)和薄膜扩散梯度技术(DGT),探究纳米Fe3O4原位覆盖对表层沉积物中Co、Ni释放的影响机制。试验结果表明:在纳米Fe3O4覆盖下沉积物pH值较对照组逐渐增大,Eh值先减小后增大;纳米Fe3O4覆盖可有效吸附间隙水中的溶解态Co和Ni,间隙水中的溶解态Co和Ni最大有效吸附率分别为27.07%及26.42%,有效影响深度分别为30 mm和10 mm;纳米Fe3O4覆盖有效抑制了沉积物中有效态Co和Ni向间隙水和上覆水扩散,沉积物中有效态Co和Ni含量分别降低了50.26%和15.31%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号