首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
锂离子动力电池在新能源汽车中已获得广泛应用,其报废后Li、Ni、Co、Mn等金属清洁高效回收对促进有色金属循环利用具有重要意义.从LiNi0.5Co0.2Mn0.3O2为正极材料的锂离子动力电池中回收Li、Ni、Co、Mn,并采用TG-DSC、XRD、ICP-OES、XPS、热力学分析等研究了回收过程物相演变规律及影响金属回收率的主要因素.结果表明:由LiNi0.5Co0.2Mn0.3O2与NaHSO4·H2O组成的混合物,经过焙烧后Li、Ni、Co、Mn元素的赋存状态发生改变,从不溶于水的复杂金属氧化物形式,转化为可溶于水的金属硫酸盐形式.焙烧产物在一定条件下用水浸出后,Li、Ni、Co、Mn元素以金属离子的形式转移到水溶液中获得回收.混合物的组成、焙烧温度对Li、Ni、Co、Mn元素在焙烧产物中的赋存形式呈现制约关系,也是影响Li、Ni、Co、Mn金属回收率的主要因素.  相似文献   

2.
为提高煤泥水的沉降效率,以丙烯酰胺(AM)、乙烯基三甲氧基硅烷(VTMS)和二甲基二烯丙基氯化铵(DADMAC)为单体,K_2S_2O_8和Na_2SO_3为引发剂,通过疏水改性,获得疏水改性阳离子型絮凝剂.分别用均匀试验设计法和正交试验设计法对合成条件进行研究.研究发现,当VTMS质量比为0.7%,VTMS∶DADMAC质量比为1.2∶19.25,升温程序为40℃1 h→60℃2 h→80℃1 h,Tween 80和Span 80为复合乳化剂,K_2S_2O_8与Na_2SO_3浓度为0.1%、混合比例为1∶1时,产率最高,为89.6%.通过红外光谱分析发现聚合物中含有NH_2(3 433 cm~(-1)),C=O(1670 cm~(-1))和Si-O-CH_3(1 401 cm~(-1))等基团,证明发生了三元共聚反应.煤泥水沉降实验发现,最快在4.9 min内可将煤泥水浊度(450 NTU左右)降低90%,证明了合成聚合物具有较好的絮凝效果.  相似文献   

3.
通过用质量分数2%的NaOH溶液浸湿洗涤前驱体的方法,研究脱除LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料中以外部吸附和络合盐离子形式存在并对电化学性能有极大危害的SO_4~(2-)杂质问题,对不同SO_4~(2-)含量的锂离子电池循环性能测试.结果表明:低质量分数的SO_4~(2-)(0.28%)的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2作为锂电池正极材料在30周期后相比于高质量分数的SO_4~(2-)(0.48%)的电极材料有明显较好的充放电循环稳定性100次充放电循环后库仑效率为92%(157.6/171.2mA·h/g).  相似文献   

4.
LiNi0.8Co0.2O2的表面修饰及性能   总被引:5,自引:0,他引:5  
锂离子电池正极材料和电解液之间的恶性相互作用引起正极材料和电池性能的劣化。将LiNi0.8Co0.2O2,LiOH*H2O和H3BO3以摩尔比100∶1∶2均匀混合,500℃热处理10h,在LiNi0.8Co0.2O2表面包覆上一层Li2O-2B2O3玻璃层。用X光电子能谱、扫描电镜和X光衍射分析对包覆前后LiNi0.8Co0.2O2的结构进行了表征。结果表明,表面修饰有效地抑制了LiNi0.8Co0.2O2和电解液之间的恶性相互作用,材料的实际比容量提高,充放电循环稳定性改善,自放电速率减小。表面修饰处理是改善锂离子电池正极材料综合性能的有效途径。  相似文献   

5.
《河南科学》2017,(8):1274-1279
采用Fe~(2+)/K_2S_2O_8氧化法预处理半合成抗生素废水,通过化学除磷试验,选取最佳除磷药剂并确定其最佳投加量;通过正交试验及单因素优化试验确定Fe~(2+)/K_2S_2O_8氧化的最优反应条件.结果表明,最佳除磷药剂为Ca O,当投加量为1800 mg/L时,出水TP10 mg/L,出水p H值11,利于后续实验.除磷后的废水再用Fe~(2+)/K_2S_2O_8体系氧化,当Fe SO_4和K_2S_2O_8投加量分别为1.3 mmol/L和0.7 mmol/L,反应时间为50 min,除磷后的废水初始p H值不调节时废水COD和色度去除率分别能达到63.4%、62.5%,且B/C也从0.2升到0.5,使废水的可生化性提高.  相似文献   

6.
早在1926年已知将硷金属盐加入钒催化剂中可显然增加其对二氧化硫氧化的催化活性.关于硷金属盐的助催化作用已有不少的研究工作.Frazer及Kirkpatrick发现K_2S_2O_7在钒催化剂的工作温度能溶解V_2O_5而生成熔盐.等对V_2O_5—K_2SO_4,V_2O_5—K_2S_2O_7体系的研究,等对V_2O_5—Na_2SO_4体系的研究,及Topsoe等对Rb,Cs,K,Na的焦硫酸盐与V_2O_5体系的研究都说明在工作温度时V_2O_5与以上盐类的体系已处于熔融状态.Topsoe等且认为其熔点降低是催化活性提高的原因。另一方面Neu mann等认为硷金属盐的作用是防止V_2O_5被SO_2还原为VOSO_4以致活性降低.发现钒钾催化剂在工作条件下可被SO_2还原.并认为这是钒钾催化剂的活性在450°突然降低,而使Arrhenius綫在450°左右发生破折的  相似文献   

7.
将Co3O4与三元前驱体材料(Ni1/3Co1/3Mn1/3)(OH)2分别以重量比5∶5、6∶4、8∶23个不同配比与适量的Li2CO3材料均匀混合,以980℃的温度焙烧15h,制备出一种新型复合正极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其形貌及物相进行对比分析,并将该材料组装成扣式电池和实效电池,对材料的电性能进行评估。结果表明,以8∶2的比例混合后制备的新型复合材料性能最为优异,该材料综合了LiCoO2材料和三元材料的优点于一身,比LiCoO2材料在安全性、容量以及循环性能等方面有了显著提高,同时还具有较高的压实密度,弥补了三元材料的不足。  相似文献   

8.
以硝酸锰、硝酸锂和尿素为原料制备尖晶石型LiMn2O4锂离子电池电极材料,考察了Li和Mn的比例、尿素用量、预置炉温、焙烧温度及时间等工艺条件对合成产物的组成结构及电化学性能的影响。最佳工艺条件下制备的产物具有纯净的尖晶石结构,均一的颗粒度及优良的电化学性能。  相似文献   

9.
采用液相共沉淀法与高温固相法合成了La2O3包覆Li(Ni1/3 Co1/3 Mn1/3 )O2的锂离子电池正极材料,采用XRD和电化学方法表征了材料的结构与电化学性能.结果表明,在1 000 ℃焙烧10 h制备的Li(Ni1/3 Co1/3 Mn1/3 )O2材料经包覆2%的La2O3后,具有较佳的电化学性能.其0.1 C倍率首次放电容量和首次充放电效率分别为151.2 mAh·g-1 和83 8%,首次循环后的交流阻抗为162.2 Ω,以0.2 C倍率循环20次后的放电容量为140.7 mAh·g-1 .  相似文献   

10.
尖晶石型LiMn2O4 电极材料的制备及性能研究   总被引:9,自引:0,他引:9  
以硝酸锰、硝酸锂和尿素为原料制备尖晶石型LiMn2O4 锂离子电池电极材料, 考察了Li 和Mn 的比例、尿素用量、预置炉温、焙烧温度及时间等工艺条件对合成产物的组成结构及电化学性能的影响。最佳工艺条件下制备的产物具有纯净的尖晶石结构, 均一的颗粒度及优良的电化学性能。  相似文献   

11.
采用柠檬酸络合法制备钙钛矿型催化剂La_(0.7)K_(0.3)Co_(0.5)Fe_(0.5)O_3,通过固定床反应器对催化剂进行活性测试,考察钙钛矿型催化剂La_(0.7)K_(0.3)Co_(0.5)Fe_(0.5)O_3在SO_2气氛下对柴油车尾气中NO的去除性能;并利用BET、XRD、FT-IR、SEM等手段对反应前后的催化剂进行表征。结果表明:钙钛矿型催化剂La_(0.7)K_(0.3)Co_(0.5)Fe_(0.5)O_3对NO有较高的催化活性;并且由于金属Fe的掺杂,提高了催化剂的抗硫性能。当SO_2浓度不高于0.05%时,催化剂表现出较好的抗硫性能;当SO_2浓度大于0.05%时,催化剂对NO的催化活性明显下降。FT-IR、SEM等表征说明,在低硫浓度下,金属Fe的掺杂可以有效阻碍硫酸盐物种的生成和累积;但在深度硫化后,催化剂的活性仍会受到一定的影响。  相似文献   

12.
利用溶剂热法制备了花环状Co_3O_4材料,并通过低温水解正硅酸乙酯工艺在Co_3O_4表面沉积SiO_2纳米层.采用XRD、FTIR、SEM、EDS、BET技术对材料的结构和形貌进行表征;应用充放电测试、循环伏安法和电化学阻抗对材料的电化学性能进行细致研究.结果表明,SiO_2颗粒均匀包覆在花环状Co_3O_4表面,SiO_2包覆显著改善了Co_3O_4复合材料的循环稳定性.循环稳定性的改善主要归因于SiO_2包覆可以有效缓解锂离子嵌入脱出过程中Co_3O_4的体积膨胀,进而改善了锂离子的扩散动力学行为.  相似文献   

13.
锂离子电池用正极材料Li(Co0.2-XNi0.8MnX)O2的合成制备研究   总被引:1,自引:1,他引:1  
研究了一种制备新型锂离子电池正极材料的工艺方法.通过采用溶胶凝胶法(sol-gel法合成了新型电池正极材料Li(Co0.2-XNi0.8MnX)O2。并采用XRD方法分析了材料的相变过程、烧结温度、烧结时间对材料相合成的影响及不Mn/Co比掺杂对材料相变的影响;通过SEM照片可见,Li(Co0.2-XNi0.8MnX)O2粉末元素分布均匀、粒径为1~4微米.为今后进行充放电性能的测试工作做准备.  相似文献   

14.
微波合成锂离子电池正极材料LiCoO_2   总被引:1,自引:1,他引:1  
用微波合成了锂离子电池正极材料LiCoO2,采用XRD、SEM和DC 5C电池测试仪研究了LiCoO2的结构、形貌和电化学性能·研究结果表明,在900W的功率和2 45GHz的频率下,反应10min即可得到纯度高、具有层状结构的LiCoO2电池材料,XRD谱线与标准层状LiCoO2材料基本一致,充放电的实验结果显示:放电容量可达140mAh/g,放电平台和充放电时间均显示出微波合成的LiCoO2具有较好的电化学活性·实验考查了Li/Co摩尔比对产品结构的影响,研究结果证明Li/Co比为1.05∶1时,得到的LiCoO2与标准样符合得更好·  相似文献   

15.
采用共沉淀法制备CuO-Co_3O_4-ZnO-CeO_2双活性组分中心催化剂,通过比表面积测定、X射线衍射、H2程序升温还原及扫描电镜对催化剂进行表征,考察了不同制备条件(沉淀剂种类、不同焙烧温度及不同活性组分中心比例)对催化剂CO脱除性能的影响。结果表明:活性组分物质的量比为CuO∶Co_3O_4=7.21∶0.95时,采用碳酸铵为沉淀剂,焙烧温度为400℃时,催化剂各组分(CuO、Co_3O_4、ZnO、CeO_2)间相互作用明显,还原性能较优,具有较大的比表面积。活性组分CuO、Co_3O_4分散均匀,显著提升催化剂还原性能和CO脱除能力,可以在80℃下将含有3%CO原料气中的CO脱除(CO转化率97%~99%),2 000min内稳定性能良好,工业前景应用良好。  相似文献   

16.
进一步提高目前成熟的锂离子电池电极材料LiCoO_2的容量是一个重要的研究方向.本文采用基于密度泛函理论的第一性原理方法研究了高脱锂量材料Li1-xCoO_2(x=0.75)的电子结构和晶体结构性质,为深入理解该高电压材料的电子结构提供基础.计算表明,LiCoO_2材料中Co是以正常的价态+3价的形式存在的.少量脱锂时,小部分Co3+由于进一步失去电子而从+3价变成+4价.当深度脱锂(x=0.75)时,不仅有很多的Co3+再变价,而且部分O-2p轨道也会失去电子,产生2种氧离子O1和O_2,其中O1离子占O变价总数的1/3,而O_2离子占2/3.不同价态的Co与不同氧离子之间的键长有明显的区别.与Co3+相比,Co4+和氧离子之间聚集了更多的电子,它们之间的相互作用力也将强于Co3+与氧离子之间的相互作用力.  相似文献   

17.
在电解法的基础上,提出了一种新的改进方法来制备锂离子电池正极材料.经超声波与相转移后,采用电解液中析出的Li2CO3和电解中间产物Co(OH)2作为前驱物制备得到了锂离子正极材料LiCoO2.通过X射线衍射,扫描电镜对所合成的材料进行了表征.实验结果证明,该前驱物在850℃下反应仅3h就能得到性能优异的LiCoO2正极材料,大大缩短了反应时间.  相似文献   

18.
采用EDTA络合溶胶-凝胶法制备出锂离子电池正极材料Li1-xKxCoO2,对Li1-xKxCoO2的成胶条件和形成过程进行探讨,并分别用XRD、SEM等手段对晶体结构、形貌等进行了研究.结果表明合成的Li1-xKxCoO2,粉体结晶良好,层状结构发育完善.在焙烧温度不高于700℃时就能够形成单一相的Li0.98K0.02CoO2,充放电实验表明,700℃,12h得到的材料具有最好的电化学性能.  相似文献   

19.
以醋酸锂和醋酸锰为原料,浓硝酸为辅助氧化剂,在温度600℃、时间3 h下采用无焰燃烧合成尖晶石型Li Mn2O4锂离子电池正极材料,研究了不同浓度硝酸对制备尖晶石型Li Mn2O4的影响.通过XRD和SEM分别研究了产物的物相组成及微观形貌;通过电性能测试研究了产物的比容量变化.实验结果表明,当n(Li)∶n(Mn)=1∶2(mol/mol)时,可得到Li Mn2O4单相,硝酸浓度对燃烧产物颗粒影响也较大;硝酸浓度为15 mol/L时产物初始放电比容量为112.1 m Ah/g,40次充放电循环后,放电比容量为99.0 m Ah/g,容量保持率为88.3%,具有较好的容量及存储性能.  相似文献   

20.
研究了高温固相法合成锂离子电池正极材料LiNi0.8Co0.2O2时原材料、气氛、温度、时间、Li:(Ni Co)化学计量比例、氧气流量、二次烧结等参数对制备电极活性材料结构和电性能的影响,使用其优化后的工艺参数,制备出容量为170mAb/g的LiNi0.8Co0.2O2,并对此正极材料组成的电池性能进行了测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号