首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric carbon dioxide concentrations before 2.2 billion years ago   总被引:5,自引:0,他引:5  
Rye R  Kuo PH  Holland HD 《Nature》1995,378(6557):603-605
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.  相似文献   

2.
Cox PM  Betts RA  Jones CD  Spall SA  Totterdell IJ 《Nature》2000,408(6809):184-187
The continued increase in the atmospheric concentration of carbon dioxide due to anthropogenic emissions is predicted to lead to significant changes in climate. About half of the current emissions are being absorbed by the ocean and by land ecosystems, but this absorption is sensitive to climate as well as to atmospheric carbon dioxide concentrations, creating a feedback loop. General circulation models have generally excluded the feedback between climate and the biosphere, using static vegetation distributions and CO2 concentrations from simple carbon-cycle models that do not include climate change. Here we present results from a fully coupled, three-dimensional carbon-climate model, indicating that carbon-cycle feedbacks could significantly accelerate climate change over the twenty-first century. We find that under a 'business as usual' scenario, the terrestrial biosphere acts as an overall carbon sink until about 2050, but turns into a source thereafter. By 2100, the ocean uptake rate of 5 Gt C yr(-1) is balanced by the terrestrial carbon source, and atmospheric CO2 concentrations are 250 p.p.m.v. higher in our fully coupled simulation than in uncoupled carbon models, resulting in a global-mean warming of 5.5 K, as compared to 4 K without the carbon-cycle feedback.  相似文献   

3.
A carbon isotope record of CO2 levels during the late Quaternary   总被引:8,自引:0,他引:8  
Jasper JP  Hayes JM 《Nature》1990,347(6292):462-464
Analyses of gases trapped in continental ice sheets have shown that the concentration of CO2 in the Earth's early atmosphere increased from 180 to 280 p.p.m. during the most recent glacial-interglacial transition. This change must have been driven by an increase in the concentration of CO2 dissolved in the mixed layer of the ocean. Biochemical and physiological factors associated with photosynthetic carbon fixation in this layer should lead to a relationship between concentrations of dissolved CO2 and the carbon isotopic composition of phytoplanktonic organic material, such that increased atmospheric CO2 should enhance the difference in 13C content between dissolved inorganic carbon and organic products of photosynthesis. Here we show that a signal related to atmospheric CO2 levels can be seen in the isotope record of a hemipelagic sediment core, which we can correlate with the CO2 record of the Vostok ice core. Calibration of the relationship between isotope fractionation and CO2 levels should permit the extrapolation of CO2 records to times earlier than those for which ice-core records are available.  相似文献   

4.
Ohmoto H  Watanabe Y  Kumazawa K 《Nature》2004,429(6990):395-399
It is generally thought that, in order to compensate for lower solar flux and maintain liquid oceans on the early Earth, methane must have been an important greenhouse gas before approximately 2.2 billion years (Gyr) ago. This is based upon a simple thermodynamic calculation that relates the absence of siderite (FeCO3) in some pre-2.2-Gyr palaeosols to atmospheric CO2 concentrations that would have been too low to have provided the necessary greenhouse effect. Using multi-dimensional thermodynamic analyses and geological evidence, we show here that the absence of siderite in palaeosols does not constrain atmospheric CO2 concentrations. Siderite is absent in many palaeosols (both pre- and post-2.2-Gyr in age) because the O2 concentrations and pH conditions in well-aerated soils have favoured the formation of ferric (Fe3+)-rich minerals, such as goethite, rather than siderite. Siderite, however, has formed throughout geological history in subsurface environments, such as euxinic seas, where anaerobic organisms created H2-rich conditions. The abundance of large, massive siderite-rich beds in pre-1.8-Gyr sedimentary sequences and their carbon isotope ratios indicate that the atmospheric CO2 concentration was more than 100 times greater than today, causing the rain and ocean waters to be more acidic than today. We therefore conclude that CO2 alone (without a significant contribution from methane) could have provided the necessary greenhouse effect to maintain liquid oceans on the early Earth.  相似文献   

5.
Kah LC  Lyons TW  Frank TD 《Nature》2004,431(7010):834-838
Progressive oxygenation of the Earth's early biosphere is thought to have resulted in increased sulphide oxidation during continental weathering, leading to a corresponding increase in marine sulphate concentration. Accurate reconstruction of marine sulphate reservoir size is therefore important for interpreting the oxygenation history of early Earth environments. Few data, however, specifically constrain how sulphate concentrations may have changed during the Proterozoic era (2.5-0.54 Gyr ago). Prior to 2.2 Gyr ago, when oxygen began to accumulate in the Earth's atmosphere, sulphate concentrations are inferred to have been <1 mM and possibly <200 microM, on the basis of limited isotopic variability preserved in sedimentary sulphides and experimental data showing suppressed isotopic fractionation at extremely low sulphate concentrations. By 0.8 Gyr ago, oxygen and thus sulphate levels may have risen significantly. Here we report large stratigraphic variations in the sulphur isotope composition of marine carbonate-associated sulphate, and use a rate-dependent model for sulphur isotope change that allows us to track changes in marine sulphate concentrations throughout the Proterozoic. Our calculations indicate sulphate levels between 1.5 and 4.5 mM, or 5-15 per cent of modern values, for more than 1 Gyr after initial oxygenation of the Earth's biosphere. Persistence of low oceanic sulphate demonstrates the protracted nature of Earth's oxygenation. It links biospheric evolution to temporal patterns in the depositional behaviour of marine iron- and sulphur-bearing minerals, biological cycling of redox-sensitive elements and availability of trace metals essential to eukaryotic development.  相似文献   

6.
Reassessing the first appearance of eukaryotes and cyanobacteria   总被引:1,自引:0,他引:1  
Rasmussen B  Fletcher IR  Brocks JJ  Kilburn MR 《Nature》2008,455(7216):1101-1104
The evolution of oxygenic photosynthesis had a profound impact on the Earth's surface chemistry, leading to a sharp rise in atmospheric oxygen between 2.45 and 2.32 billion years (Gyr) ago and the onset of extreme ice ages. The oldest widely accepted evidence for oxygenic photosynthesis has come from hydrocarbons extracted from approximately 2.7-Gyr-old shales in the Pilbara Craton, Australia, which contain traces of biomarkers (molecular fossils) indicative of eukaryotes and suggestive of oxygen-producing cyanobacteria. The soluble hydrocarbons were interpreted to be indigenous and syngenetic despite metamorphic alteration and extreme enrichment (10-20 per thousand) of (13)C relative to bulk sedimentary organic matter. Here we present micrometre-scale, in situ (13)C/(12)C measurements of pyrobitumen (thermally altered petroleum) and kerogen from these metamorphosed shales, including samples that originally yielded biomarkers. Our results show that both kerogen and pyrobitumen are strongly depleted in (13)C, indicating that indigenous petroleum is 10-20 per thousand lighter than the extracted hydrocarbons. These results are inconsistent with an indigenous origin for the biomarkers. Whatever their origin, the biomarkers must have entered the rock after peak metamorphism approximately 2.2 Gyr ago and thus do not provide evidence for the existence of eukaryotes and cyanobacteria in the Archaean eon. The oldest fossil evidence for eukaryotes and cyanobacteria therefore reverts to 1.78-1.68 Gyr ago and approximately 2.15 Gyr ago, respectively. Our results eliminate the evidence for oxygenic photosynthesis approximately 2.7 Gyr ago and exclude previous biomarker evidence for a long delay (approximately 300 million years) between the appearance of oxygen-producing cyanobacteria and the rise in atmospheric oxygen 2.45-2.32 Gyr ago.  相似文献   

7.
Watson AJ  Bakker DC  Ridgwell AJ  Boyd PW  Law CS 《Nature》2000,407(6805):730-733
Photosynthesis by marine phytoplankton in the Southern Ocean, and the associated uptake of carbon, is thought to be currently limited by the availability of iron. One implication of this limitation is that a larger iron supply to the region in glacial times could have stimulated algal photosynthesis, leading to lower concentrations of atmospheric CO2. Similarly, it has been proposed that artificial iron fertilization of the oceans might increase future carbon sequestration. Here we report data from a whole-ecosystem test of the iron-limitation hypothesis in the Southern Ocean, which show that surface uptake of atmospheric CO2 and uptake ratios of silica to carbon by phytoplankton were strongly influenced by nanomolar increases of iron concentration. We use these results to inform a model of global carbon and ocean nutrients, forced with atmospheric iron fluxes to the region derived from the Vostok ice-core dust record. During glacial periods, predicted magnitudes and timings of atmospheric CO2 changes match ice-core records well. At glacial terminations, the model suggests that forcing of Southern Ocean biota by iron caused the initial approximately 40 p.p.m. of glacial-interglacial CO2 change, but other mechanisms must have accounted for the remaining 40 p.p.m. increase. The experiment also confirms that modest sequestration of atmospheric CO2 by artificial additions of iron to the Southern Ocean is in principle possible, although the period and geographical extent over which sequestration would be effective remain poorly known.  相似文献   

8.
Conte MH  Weber JC 《Nature》2002,417(6889):639-641
Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the (12)C/(13)C isotopic ratio (delta(13)C) of atmospheric carbon dioxide, because terrestrial photosynthesis strongly discriminates against (13)CO(2), whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Delta; ref. 5) at large regional scales, yet terrestrial ecosystem heterogeneity makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Delta over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Delta simply. Our estimates indicate a large (5 6 per thousand) seasonal variation in Delta of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C(3) and C(4) plants, and environmentally controlled adjustments in the photosynthetic discrimination of C(3)-plant-dominated ecosystems.  相似文献   

9.
Annihilation of ecosystems by large asteroid impacts on the early Earth   总被引:6,自引:0,他引:6  
Sleep NH  Zahnle KJ  Kasting JF  Morowitz HJ 《Nature》1989,342(6246):139-142
Large asteroid impacts produced globally lethal conditions by evaporating large volumes of ocean water on the early Earth. The Earth may have been continuously habitable by ecosystems that did not depend on photosynthesis as early as 4.44 Gyr BP (before present). Only a brief interval after 3.8 Gyr exists between the time when obligate photosynthetic organisms could continuously evolve and the time when the palaeontological record indicates highly evolved photosynthetic ecosystems.  相似文献   

10.
Kranz anatomy is not essential for terrestrial C4 plant photosynthesis.   总被引:9,自引:0,他引:9  
An important adaptation to CO2-limited photosynthesis in cyanobacteria, algae and some plants was development of CO2-concentrating mechanisms (CCM). Evolution of a CCM occurred many times in flowering plants, beginning at least 15-20 million years ago, in response to atmospheric CO2 reduction, climate change, geological trends, and evolutionary diversification of species. In plants, this is achieved through a biochemical inorganic carbon pump called C4 photosynthesis, discovered 35 years ago. C4 photosynthesis is advantageous when limitations on carbon acquisition are imposed by high temperature, drought and saline conditions. It has been thought that a specialized leaf anatomy, composed of two, distinctive photosynthetic cell types (Kranz anatomy), is required for C4 photosynthesis. We provide evidence that C4 photosynthesis can function within a single photosynthetic cell in terrestrial plants. Borszczowia aralocaspica (Chenopodiaceae) has the photosynthetic features of C4 plants, yet lacks Kranz anatomy. This species accomplishes C4 photosynthesis through spatial compartmentation of photosynthetic enzymes, and by separation of two types of chloroplasts and other organelles in distinct positions within the chlorenchyma cell cytoplasm.  相似文献   

11.
Nitrogen is an essential element for life and is often the limiting nutrient for terrestrial ecosystems. As most nitrogen is locked in the kinetically stable form, N2, in the Earth's atmosphere, processes that can fix N2 into biologically available forms-such as nitrate and ammonia-control the supply of nitrogen for organisms. On the early Earth, nitrogen is thought to have been fixed abiotically, as nitric oxide formed during lightning discharge. The advent of biological nitrogen fixation suggests that at some point the demand for fixed nitrogen exceeded the supply from abiotic sources, but the timing and causes of the onset of biological nitrogen fixation remain unclear. Here we report an experimental simulation of nitrogen fixation by lightning over a range of Hadean (4.5-3.8 Gyr ago) and Archaean (3.8-2.5 Gyr ago) atmospheric compositions, from predominantly carbon dioxide to predominantly dinitrogen (but always without oxygen). We infer that, as atmospheric CO2 decreased over the Archaean period, the production of nitric oxide from lightning discharge decreased by two orders of magnitude until about 2.2 Gyr. After this time, the rise in oxygen (or methane) concentrations probably initiated other abiotic sources of nitrogen. Although the temporary reduction in nitric oxide production may have lasted for only 100 Myr or less, this was potentially long enough to cause an ecological crisis that triggered the development of biological nitrogen fixation.  相似文献   

12.
The snowball Earth hypothesis postulates that the planet was entirely covered by ice for millions of years in the Neoproterozoic era, in a self-enhanced glaciation caused by the high albedo of the ice-covered planet. In a hard-snowball picture, the subsequent rapid unfreezing resulted from an ultra-greenhouse event attributed to the buildup of volcanic carbon dioxide (CO(2)) during glaciation. High partial pressures of atmospheric CO(2) (pCO2; from 20,000 to 90,000?p.p.m.v.) in the aftermath of the Marinoan glaciation (~635?Myr ago) have been inferred from both boron and triple oxygen isotopes. These pCO2 values are 50 to 225 times higher than present-day levels. Here, we re-evaluate these estimates using paired carbon isotopic data for carbonate layers that cap Neoproterozoic glacial deposits and are considered to record post-glacial sea level rise. The new data reported here for Brazilian cap carbonates, together with previous ones for time-equivalent units, provide estimates lower than 3,200?p.p.m.v.--and possibly as low as the current value of ~400?p.p.m.v. Our new constraint, and our re-interpretation of the boron and triple oxygen isotope data, provide a completely different picture of the late Neoproterozoic environment, with low atmospheric concentrations of carbon dioxide and oxygen that are inconsistent with a hard-snowball Earth.  相似文献   

13.
The stable isotope ratios of atmospheric CO(2) ((18)O/(16)O and (13)C/(12)C) have been monitored since 1977 to improve our understanding of the global carbon cycle, because biosphere-atmosphere exchange fluxes affect the different atomic masses in a measurable way. Interpreting the (18)O/(16)O variability has proved difficult, however, because oxygen isotopes in CO(2) are influenced by both the carbon cycle and the water cycle. Previous attention focused on the decreasing (18)O/(16)O ratio in the 1990s, observed by the global Cooperative Air Sampling Network of the US National Oceanic and Atmospheric Administration Earth System Research Laboratory. This decrease was attributed variously to a number of processes including an increase in Northern Hemisphere soil respiration; a global increase in C(4) crops at the expense of C(3) forests; and environmental conditions, such as atmospheric turbulence and solar radiation, that affect CO(2) exchange between leaves and the atmosphere. Here we present 30 years' worth of data on (18)O/(16)O in CO(2) from the Scripps Institution of Oceanography global flask network and show that the interannual variability is strongly related to the El Ni?o/Southern Oscillation. We suggest that the redistribution of moisture and rainfall in the tropics during an El Ni?o increases the (18)O/(16)O ratio of precipitation and plant water, and that this signal is then passed on to atmospheric CO(2) by biosphere-atmosphere gas exchange. We show how the decay time of the El Ni?o anomaly in this data set can be useful in constraining global gross primary production. Our analysis shows a rapid recovery from El Ni?o events, implying a shorter cycling time of CO(2) with respect to the terrestrial biosphere and oceans than previously estimated. Our analysis suggests that current estimates of global gross primary production, of 120 petagrams of carbon per year, may be too low, and that a best guess of 150-175 petagrams of carbon per year better reflects the observed rapid cycling of CO(2). Although still tentative, such a revision would present a new benchmark by which to evaluate global biospheric carbon cycling models.  相似文献   

14.
15.
Evolution of the atmosphere and oceans   总被引:1,自引:0,他引:1  
Holland HD  Lazar B  McCaffrey M 《Nature》1986,320(6057):27-33
The residence times of most constituents of the atmosphere and oceans are small fractions of the age of the Earth and, in general, their rate of output has been nearly equal to their rate of input. We are disturbing a number of these dynamic equilibria quite severely. The mineralogy of marine evaporites rules out drastic changes in the composition of sea water during the last 900 Myr. The chemistry of soils formed more than 1,000 Myr ago suggests that the atmosphere then contained significantly more CO2 and less O2 than at present. Hydrogen peroxide may well have been the principal oxidant and formaldehyde the main reductant in rain water between 3,000 and 1,000 Myr ago. Major changes in atmospheric chemistry since that time are almost certainly related to the evolution of the biosphere.  相似文献   

16.
Bao H  Lyons JR  Zhou C 《Nature》2008,453(7194):504-506
Understanding the composition of the atmosphere over geological time is critical to understanding the history of the Earth system, as the atmosphere is closely linked to the lithosphere, hydrosphere and biosphere. Although much of the history of the lithosphere and hydrosphere is contained in rock and mineral records, corresponding information about the atmosphere is scarce and elusive owing to the lack of direct records. Geologists have used sedimentary minerals, fossils and geochemical models to place constraints on the concentrations of carbon dioxide, oxygen or methane in the past. Here we show that the triple oxygen isotope composition of sulphate from ancient evaporites and barites shows variable negative oxygen-17 isotope anomalies over the past 750 million years. We propose that these anomalies track those of atmospheric oxygen and in turn reflect the partial pressure of carbon dioxide (P(CO2)) in the past through a photochemical reaction network linking stratospheric ozone to carbon dioxide and to oxygen. Our results suggest that P(CO2) was much higher in the early Cambrian than in younger eras, agreeing with previous modelling results. We also find that the (17)O isotope anomalies of barites from Marinoan (approximately 635 million years ago) cap carbonates display a distinct negative spike (around -0.70 per thousand), suggesting that by the time barite was precipitating in the immediate aftermath of a Neoproterozoic global glaciation, the P(CO2) was at its highest level in the past 750 million years. Our finding is consistent with the 'snowball Earth' hypothesis and/or a massive methane release after the Marinoan glaciation.  相似文献   

17.
The photosynthetic performances of Porphyra haitanensis thalli were investigated in order to understand its mechanisms for exogenous carbon acquisition during emersion at low tide. The emersed photosynthesis was studied by altering the pH value in the water film on the thalli surface, treating them with carbonic anhydarase inhibitors (acetazolamide and 6-ethoxyzolamide), adjusting the CO2 concentrations in the air, and comparing the theoretical maximum CO2 supply rates within the adherent water film with the observed photosynthetic CO2 uptake rates. It was found that the principal exogenous inorganic carbon source for the photosynthesis of P. haitanensis during emersion was atmospheric CO2. The driving force of CO2 flux across the water film was the CO2 concentration gradient within it. Carbonic anhydrase accelerated both extracellular and intracellular CO2 transport. The emersed photosynthesis of P. haitanensis was limited by the present atmospheric CO2 level, and would be enhanced by atmospheric CO2 rise that would trigger global warming.  相似文献   

18.
The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events4. At least seven spherule beds have been found that formed between 3.23 and 3.47?Gyr ago, four between 2.49 and 2.63?Gyr ago, and one between 1.7 and 2.1?Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1?Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7?Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7?Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.  相似文献   

19.
Thresholds for Cenozoic bipolar glaciation   总被引:1,自引:0,他引:1  
Deconto RM  Pollard D  Wilson PA  Pälike H  Lear CH  Pagani M 《Nature》2008,455(7213):652-656
The long-standing view of Earth's Cenozoic glacial history calls for the first continental-scale glaciation of Antarctica in the earliest Oligocene epoch ( approximately 33.6 million years ago), followed by the onset of northern-hemispheric glacial cycles in the late Pliocene epoch, about 31 million years later. The pivotal early Oligocene event is characterized by a rapid shift of 1.5 parts per thousand in deep-sea benthic oxygen-isotope values (Oi-1) within a few hundred thousand years, reflecting a combination of terrestrial ice growth and deep-sea cooling. The apparent absence of contemporaneous cooling in deep-sea Mg/Ca records, however, has been argued to reflect the growth of more ice than can be accommodated on Antarctica; this, combined with new evidence of continental cooling and ice-rafted debris in the Northern Hemisphere during this period, raises the possibility that Oi-1 represents a precursory bipolar glaciation. Here we test this hypothesis using an isotope-capable global climate/ice-sheet model that accommodates both the long-term decline of Cenozoic atmospheric CO(2) levels and the effects of orbital forcing. We show that the CO(2) threshold below which glaciation occurs in the Northern Hemisphere ( approximately 280 p.p.m.v.) is much lower than that for Antarctica ( approximately 750 p.p.m.v.). Therefore, the growth of ice sheets in the Northern Hemisphere immediately following Antarctic glaciation would have required rapid CO(2) drawdown within the Oi-1 timeframe, to levels lower than those estimated by geochemical proxies and carbon-cycle models. Instead of bipolar glaciation, we find that Oi-1 is best explained by Antarctic glaciation alone, combined with deep-sea cooling of up to 4 degrees C and Antarctic ice that is less isotopically depleted (-30 to -35 per thousand) than previously suggested. Proxy CO(2) estimates remain above our model's northern-hemispheric glaciation threshold of approximately 280 p.p.m.v. until approximately 25 Myr ago, but have been near or below that level ever since. This implies that episodic northern-hemispheric ice sheets have been possible some 20 million years earlier than currently assumed (although still much later than Oi-1) and could explain some of the variability in Miocene sea-level records.  相似文献   

20.
Gedney N  Cox PM  Betts RA  Boucher O  Huntingford C  Stott PA 《Nature》2006,439(7078):835-838
Continental runoff has increased through the twentieth century despite more intensive human water consumption. Possible reasons for the increase include: climate change and variability, deforestation, solar dimming, and direct atmospheric carbon dioxide (CO2) effects on plant transpiration. All of these mechanisms have the potential to affect precipitation and/or evaporation and thereby modify runoff. Here we use a mechanistic land-surface model and optimal fingerprinting statistical techniques to attribute observational runoff changes into contributions due to these factors. The model successfully captures the climate-driven inter-annual runoff variability, but twentieth-century climate alone is insufficient to explain the runoff trends. Instead we find that the trends are consistent with a suppression of plant transpiration due to CO2-induced stomatal closure. This result will affect projections of freshwater availability, and also represents the detection of a direct CO2 effect on the functioning of the terrestrial biosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号