首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
利用亚纯函数值分布理论和正规族理论、线性代数理论及研究方法,研究了全纯曲线族分担超平面的正规性。设$ \mathcal{F} $是从$ D\subset \mathbb{C} $到${\mathbb{P}}^{3}\left(\mathbb{C}\right) $的一族全纯映射,$ {H}_{0}$和${H}_{l}({H}_{l}\ne {H}_{0}) $是$ {\mathbb{P}}^{3}\left(\mathbb{C}\right) $上处于一般位置的超平面,$l=1,2,\cdots,8 $。假定对于任意的$ f\in \mathcal{F} $满足条件:$f(\textit{z})\in H_l$当且仅当$\nabla f \in H_l=\{x\in {\mathbb{P}}^{3}\left(\mathbb{C}\right): \rhbr \langle x, \alpha_l \rangle=0\}$;若$f(\textit{z})\in H_l $的并集,有$|\langle f\left(z\right),{H}_{0}\rangle|/(\|f\|\|{H}_{0}\|)$大于或等于$\delta $。$0 < \delta < 1 $,$\delta $是常数,则 $ \mathcal{F} $在D上正规。  相似文献   

2.
构造了一个新的Sobolev空间,建立了紧嵌入定理,分析了含临界参数双调和方程的特征值问题,最后根据含有Cerami条件的山路引理,在这个新空间中讨论了一类含Hardy位势及临界参数的双调和方程非平凡解的存在性.  相似文献   

3.
利用山路引理及临界群,在共振的情况下讨论含Hardy位势的双调和方程,获得了方程非平凡解的存在性和多重性.  相似文献   

4.
设$G$是无限循环群被有限生成Abel群的中心扩张, $T$是$G$的中心$\zeta G$的挠子群. 如果$T$的阶与$\zeta G/(G''\oplus T)$的挠子群的阶互素, 那么 群$G$可分解为$G=S\times F\times T$, 其中 $$ S=\left\{\left( \begin{array}{cccccc} 1&d_1\alpha_{1}&d_2\alpha_{2}&\cdots&d_r\alpha_{r}&\alpha_{r+1}\0&1&0&\cdots&0&\alpha_{r+2}\\vdots&\vdots&\vdots& &\vdots&\vdots\0&0&0&\cdots&0&\alpha_{2r}\0&0&0&\cdots&1&\alpha_{2r+1}\0&0&0&\cdots&0&1 \end{array} \right)\left| \begin{aligned} \\\alpha_{j}\in \mathbb{Z} \\~\ \end{aligned} \right. \right\}, $$ 这里$d_i$都是正整数, 满足$d_1\mid d_2\mid \cdots \mid d_r$, $F$是秩为$s$的自由Abel群, $T$是有限Abel群, $T=\mathbb{Z}_{e_1}\oplus \mathbb{Z}_{e_2}\oplus\cdots\oplus\mathbb{Z}_{e_t}$, $e_1>1$, 满足$e_1\mid e_2\mid \cdots \mid e_t$, 并且$(d_1, e_t)=1$. 进一步, $(d_1, d_2,\cdots , d_r; s;e_1,e_2,\cdots , e_t)$ 是群$G$的同构不变量, 即若群$H$也是无限循环群被有限生成Abel群的中心扩张, $T_{H}$是$\zeta H$的挠子群. 如果$T_{H}$的阶与$\zeta H/(H''\oplus T_{H})$的挠子群的阶互素, 那么$G$同构于$H$的充要条件是它们有相同的不变量. 显然, 这个结果涵盖了有限生成Abel群的结构定理.  相似文献   

5.
仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在某个群同构~$\alpha$~(其中~$\alpha(\widetilde{S}) =
\widetilde{S}$)~下的固定点集合
能被看作是仿射~Weyl~群~($\widetilde{C}_n,S$). 那么加权的~Coxeter~群\
($\widetilde{C}_n,\widetilde{\ell}$)的左和双边胞腔($\widetilde{\ell}$
是仿射~Weyl~群~$\widetilde{A}_{2n}$~的长度函数),
就能通过研究仿射~Weyl~群~($\widetilde{A}_{2n},\widetilde{S}$)
在群同构~$\alpha$~下的固定点集合而给出一个清晰的划分.
因此给出了加权的~Coxeter~群~($\widetilde{C}_n,\widetilde{\ell}$)
对应于划分\ $\textbf{k}\textbf{1}^{\textbf{2n+1-k}}$~和~$(2n-1,2)$
的所有左胞腔的清晰刻画, 这里对所有的~$1\leqslant k \leqslant 2n+1$.  相似文献   

6.
基于键算符平均场近似,讨论了阻挫和单粒子各向异性对自旋为1的反铁磁自旋链的影响。通过求解自恰方程,得到了低能激发能谱、自由能、静态磁化率和比热容。系统激发态能谱的能隙分别在阻挫和单粒子各向异性的影响下转变为0,这意味着存在量子相变。阻挫诱导的临界点是在$\alpha $为1.39和D为−0.35,$ \mathrm{\alpha } $是相邻格点之间的阻挫比值,D是沿z轴方向的各向异性因子。计算的相变临界点与其他数值方法的结果是一致的。  相似文献   

7.
基于值分布和正规族理论以及高等代数相关知识,研究了全纯曲线族及其导曲线分担处于$ t $次一般位置的超平面的正规定则。设$ \mathcal{F} $是一族从区域$ D \subset \mathbb{C} $到${\mathbb{P}}^{N}(\mathbb{C})$的全纯曲线,${H_\ell } = \rhbr \left\{ {{\bm{x}} \in {\mathbb{P}^N}(\mathbb{C}):} \right.\left. {\left\langle {{\bm{x}},{{\bm{\alpha}} _\ell }} \right\rangle = {\text{0}}} \right\}$是$ {\mathbb{P}^N}(\mathbb{C}) $中处于$ t $次一般位置的超平面,${{\bm{\alpha}} _\ell } = {\left( {{a_{\ell 0}},{a_{\ell 1}}, \cdots ,{a_{\ell N}}} \right)^{\text{T}}},{\text{ }}\ell = 1,2, \cdots ,3t + 1$,$ {H_0} = \left\{ {{x_0} = {\text{0}}} \right\} $,$t\geqslant N$。假定对任意的$ f \in \mathcal{F} $满足条件:若$ f(z) \in {H_\ell } $,则$ \nabla f(z) \in {H_\ell } $,$ \ell = 1,2, \cdots ,3t + 1 $;若$f(z) \in \displaystyle \bigcup\limits_{\ell = 1}^{3t + 1} {{H_\ell }}$,则$\dfrac{\left|\langle f(z),{H}_{0}\rangle \right|}{\Vert f(z)\Vert \cdot \Vert {H}_{0}\Vert }\geqslant\delta$,其中,$ \delta \in \left(0,1\right) $且为常数。那么,$ \mathcal{F} $在$ D $上正规。对于$ N = 3 $,$ t = 3,4,5 $的特殊情形,本文有效降低了所分担超平面的个数。  相似文献   

8.
 研究磁微极流体方程弱解的正则性,证明了用压力P控制的正则准则.即:如果压力P满足:PLq(0,T;Lp),(3/p)+(2/q)≤2,(3/2)<p≤∞或zPLq(0,T;Lp),(3/p)+(2/q)≤(7/4),(12/7)≤p≤4;则弱解(u,ω,b)在(0,T]上是光滑解.  相似文献   

9.
本文证明了满足方程 $\det\left(\frac{\partial^{2}u}{\partial \xi_{i}\partial \xi_{j}}\right) = \exp \left\{-\sum d_i \frac{\partial u}{\partial \xi_{i}} - d_0\right\}$ ( 其中 $d_0$, $d_1$,...,$d_n$ 是常数) 的任何光滑严格凸的整体解 $u$ 一定是二次多项式. 我们推广了著名的 J\"{o}rgens-Calabi-Pogorelov 定理.  相似文献   

10.
应用格林函数的性质和迭代法, 研究了一类具有变号格林函数的三阶三点边值问题 $\left\{ {\begin{array}{*{20}{c}} \begin{array}{l} u'\left( t \right) = f\left( {t,u\left( t \right)} \right)\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( {t \in \left[ {0,1} \right]} \right),\\ u\left( 1 \right) = 0,u'\left( 0 \right) = u'\left( 0 \right),\alpha u'\left( \eta \right) + \beta u\left( 0 \right) = 0 \end{array} \end{array}} \right.$ 正解的存在性, 其中, f∈C([0, 1]×[0, ∞), [0, ∞)), α∈[0, 1], $\frac{2}{7}$α < β < $\frac{2}{3}$α, η∈[$\frac{2}{3}$, 1). 得到了该边值问题正解存在性的条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号