首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The perception of moving plaids reveals two motion-processing stages   总被引:3,自引:0,他引:3  
L Welch 《Nature》1989,337(6209):734-736
When viewed through a small aperture, the perceived motion exhibited by a long moving line or grating is ambiguous. This situation prevails because even a perfect machine could only detect motion perpendicular to a moving contour, so motion parallel to a contour is undetectable. The human visual system views the world through an aperture array--the neural receptive fields. Therefore a moving object is viewed through many small apertures and the motion within many of those apertures is ambiguous. This ambiguity may be resolved by monitoring the motion of a distinctive feature, such as a line-end or corner, and attributing to the larger object the motion of the feature. Alternatively, Adelson and Movshon have suggested that moving images are processed in two stages, that is, they are first decomposed into one-dimensional components which are later recombined to generate perceived object motion. For a moving plaid, defined as the sum of two drifting gratings, these alternative models generate different predictions concerning the resolution of the plaid's motion ambiguity. A feature monitor would respond to the motion of the intersections between gratings, whereas the two-stage motion processor would first decompose the plaid into its constituent gratings and subsequently recombine them to generate the perception of a moving plaid. Using speed discrimination to distinguish between the two models, I find that discrimination thresholds reflect the speed of a plaid's component gratings, rather than the speed of the plaid itself. This result supports the two-stage model. Although speed discrimination is limited by component processing, observers cannot directly access component speed. The only perceptually accessible velocity signal is generated by the second-stage pattern processing.  相似文献   

2.
C D Salzman  K H Britten  W T Newsome 《Nature》1990,346(6280):174-177
Neurons in the visual cortex respond selectively to perceptually salient features of the visual scene, such as the direction and speed of moving objects, the orientation of local contours, or the colour or relative depth of a visual pattern. It is commonly assumed that the brain constructs its percept of the visual scene from information encoded in the selective responses of such neurons. We have now tested this hypothesis directly by measuring the effect on psychophysical performance of modifying the firing rates of physiologically characterized neurons. We required rhesus monkeys to report the direction of motion in a visual display while we electrically stimulated clusters of directionally selective neurons in the middle temporal visual area (MT, or V5), an extrastriate area that plays a prominent role in the analysis of visual motion information. Microstimulation biased the animals' judgements towards the direction of motion encoded by the stimulated neurons. This result indicates that physiological properties measured at the neuronal level can be causally related to a specific aspect of perceptual performance.  相似文献   

3.
Li Y  Van Hooser SD  Mazurek M  White LE  Fitzpatrick D 《Nature》2008,456(7224):952-956
The onset of vision occurs when neural circuits in the visual cortex are immature, lacking both the full complement of connections and the response selectivity that defines functional maturity. Direction-selective responses are particularly vulnerable to the effects of early visual deprivation, but it remains unclear how stimulus-driven neural activity guides the emergence of cortical direction selectivity. Here we report observations from a motion training protocol that allowed us to monitor the impact of experience on the development of direction-selective responses in visually naive ferrets. Using intrinsic signal imaging techniques, we found that training with a single axis of motion induced the rapid emergence of direction columns that were confined to cortical regions preferentially activated by the training stimulus. Using two-photon calcium imaging techniques, we found that single neurons in visually naive animals exhibited weak directional biases and lacked the strong local coherence in the spatial organization of direction preference that was evident in mature animals. Training with a moving stimulus, but not with a flashed stimulus, strengthened the direction-selective responses of individual neurons and preferentially reversed the direction biases of neurons that deviated from their neighbours. Both effects contributed to an increase in local coherence. We conclude that early experience with moving visual stimuli drives the rapid emergence of direction-selective responses in the visual cortex.  相似文献   

4.
W S Geisler 《Nature》1999,400(6739):65-69
Although many neurons in the primary visual cortex (V1) of primates are direction selective, they provide ambiguous information about the direction of motion of a stimulus. There is evidence that one of the ways in which the visual system resolves this ambiguity is by computing, from the responses of V1 neurons, velocity components in two or more spatial orientations and then combining these velocity components. Here I consider another potential neural mechanism for determining motion direction. When a localized image feature moves fast enough, it should become smeared in space owing to temporal integration in the visual system, creating a spatial signal-a 'motion streak'-oriented in the direction of the motion. The orientation masking and adaptation experiments reported here show that these spatial signals for motion direction exist in the human visual system for feature speeds above about 1 feature width per 100 ms. Computer simulations show that this psychophysical finding is consistent with the known response properties of V1 neurons, and that these spatial signals, when appropriately processed, are sufficient to determine motion direction in natural images.  相似文献   

5.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

6.
S Treue  J C Martínez Trujillo 《Nature》1999,399(6736):575-579
Changes in neural responses based on spatial attention have been demonstrated in many areas of visual cortex, indicating that the neural correlate of attention is an enhanced response to stimuli at an attended location and reduced responses to stimuli elsewhere. Here we demonstrate non-spatial, feature-based attentional modulation of visual motion processing, and show that attention increases the gain of direction-selective neurons in visual cortical area MT without narrowing the direction-tuning curves. These findings place important constraints on the neural mechanisms of attention and we propose to unify the effects of spatial location, direction of motion and other features of the attended stimuli in a 'feature similarity gain model' of attention.  相似文献   

7.
Angelaki DE  Shaikh AG  Green AM  Dickman JD 《Nature》2004,430(6999):560-564
A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.  相似文献   

8.
van Ee R  Anderson BL 《Nature》2001,410(6829):690-694
The spatial differences between the images seen by the two eyes, called binocular disparities, can be used to recover the volumetric (three-dimensional) aspects of a scene. The computation of disparity depends upon the correct identification of corresponding features in the two images. Understanding what image features are used by the brain to solve this matching problem is one of the main issues in stereoscopic vision. Many cortical neurons in visual areas V1 (ref. 2), MT (refs 3, 4) and MST (refs 5, 6) that are tuned to binocular disparity are also tuned to orientation, motion direction and speed. Although psychophysical work has shown that motion direction can facilitate binocular matching, the psychophysical literature on the role of orientation is mixed, and it has been argued that speed differences are ineffective in aiding correspondence. Here we use a different psychophysical paradigm to show that the visual system uses similarities in orientation, motion direction and speed to achieve binocular correspondence. These results indicate that cells that multiplex orientation, motion direction, speed and binocular disparity may help to solve the binocular matching problem.  相似文献   

9.
Nadler JW  Angelaki DE  DeAngelis GC 《Nature》2008,452(7187):642-645
Perception of depth is a fundamental challenge for the visual system, particularly for observers moving through their environment. The brain makes use of multiple visual cues to reconstruct the three-dimensional structure of a scene. One potent cue, motion parallax, frequently arises during translation of the observer because the images of objects at different distances move across the retina with different velocities. Human psychophysical studies have demonstrated that motion parallax can be a powerful depth cue, and motion parallax seems to be heavily exploited by animal species that lack highly developed binocular vision. However, little is known about the neural mechanisms that underlie this capacity. Here we show, by using a virtual-reality system to translate macaque monkeys (Macaca mulatta) while they viewed motion parallax displays that simulated objects at different depths, that many neurons in the middle temporal area (area MT) signal the sign of depth (near versus far) from motion parallax in the absence of other depth cues. To achieve this, neurons must combine visual motion with extra-retinal (non-visual) signals related to the animal's movement. Our findings suggest a new neural substrate for depth perception and demonstrate a robust interaction of visual and non-visual cues in area MT. Combined with previous studies that implicate area MT in depth perception based on binocular disparities, our results suggest that area MT contains a more general representation of three-dimensional space that makes use of multiple cues.  相似文献   

10.
Neural correlates of perceptual motion coherence.   总被引:6,自引:0,他引:6  
G R Stoner  T D Albright 《Nature》1992,358(6385):412-414
The motions of overlapping contours in a visual scene may arise from the physical motion(s) of either a single or multiple surface(s). A central problem facing the visual motion system is that of assigning the most likely interpretation. The rules underlying this perceptual decision can be explored using a visual stimulus formed by superimposing two moving gratings. The resultant percept is either that of a single coherently moving 'plaid pattern' (coherent motion) or of the two component gratings sliding noncoherently across one another (noncoherent motion). When plaid patterns are configured to mimic one transparent grating overlying another, the percept of noncoherent motion dominates. We now report that neurons in the visual cortex of rhesus monkeys exhibit changes in direction tuning that parallel this perceptual phenomenon: sensitivity to the motions of the component gratings is enhanced under conditions that favour the perception of noncoherent motion. These results challenge models of cortical visual processing that fail to take into account the contribution of figural image segmentation cues to the analysis of visual motion.  相似文献   

11.
The neural correlates of the motion priming were examined in normal young subjects using event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI). Visual motion perception can be uncon-sciously biased in favor of a particular direction by a pre-ceding motion in that direction. Motion priming first in-volved an enhancement of ERP amplitude about 100 ms fol-lowing the onset of motion. The amplitudes of ERP compo-nents after 350 ms were also increased. The fMRI results suggest that the early-latency effect reflects modulation of neural responses in extrastriate cortex. Higher-level visual processing areas, including cortical regions MT/MST and the intraparietal cortices were also activated. The findings provide direct evidence that unconscious priming of motion perception is the result of interaction of direction-selective neural responses to motion stimuli. The results cannot be accounted for by refractoriness of neural responses, but in-stead support a theory of motion priming based on motion opponency, as proposed in computational models.  相似文献   

12.
Basole A  White LE  Fitzpatrick D 《Nature》2003,423(6943):986-990
Stimulus features such as edge orientation, motion direction and spatial frequency are thought to be encoded in the primary visual cortex by overlapping feature maps arranged so that the location of neurons activated by a particular combination of stimulus features can be predicted from the intersections of these maps. This view is based on the use of grating stimuli, which limit the range of stimulus combinations that can be examined. We used optical imaging of intrinsic signals in ferrets to assess patterns of population activity evoked by the motion of a texture (a field of iso-oriented bars). Here we show that the same neural population can be activated by multiple combinations of orientation, length, motion axis and speed. Rather than reflecting the intersection of multiple maps, our results indicate that population activity in primary visual cortex is better described as a single map of spatiotemporal energy.  相似文献   

13.
Modulation of the motion aftereffect by selective attention   总被引:4,自引:0,他引:4  
A Chaudhuri 《Nature》1990,344(6261):60-62
The motion aftereffect is a much studied and well documented phenomenon. After viewing a moving visual pattern for a period of time, the same pattern appears to drift in the opposite direction when it is stopped. Psychophysical experiments involving interocular transfer, dichoptic stimulation, and motion aftereffects contingent upon other visual parameters such as colour, orientation and texture, imply that the motion aftereffect is generated at the level of the visual cortex. It has been hypothesized that cortical neurons specialized for the detection of motion along a particular direction become 'fatigued' during the adaptation period so that the resting equilibrium subsequently shifts in the opposite direction to that of the adapting stimulus, giving rise to the sensation of the aftereffect. I have found that if observers are engaged in a separate discrimination task superimposed on a moving textured background, the subsequent motion aftereffect to the background is considerably reduced. It seems that motion aftereffects are susceptible to attentional mechanisms.  相似文献   

14.
C C Pack  V K Berezovskii  R T Born 《Nature》2001,414(6866):905-908
In order to see the world with high spatial acuity, an animal must sample the visual image with many detectors that restrict their analyses to extremely small regions of space. The visual cortex must then integrate the information from these localized receptive fields to obtain a more global picture of the surrounding environment. We studied this process in single neurons within the middle temporal visual area (MT) of macaques using stimuli that produced conflicting local and global information about stimulus motion. Neuronal responses in alert animals initially reflected predominantly the ambiguous local motion features, but gradually converged to an unambiguous global representation. When the same animals were anaesthetized, the integration of local motion signals was markedly impaired even though neuronal responses remained vigorous and directional tuning characteristics were intact. Our results suggest that anaesthesia preferentially affects the visual processing responsible for integrating local signals into a global visual representation.  相似文献   

15.
Neural synchrony correlates with surface segregation rules   总被引:4,自引:0,他引:4  
To analyse an image, the visual system must decompose the scene into its relevant parts. Identifying distinct surfaces is a basic operation in such analysis, and is believed to precede object recognition. Two superimposed gratings moving in different directions (plaid stimuli) may be perceived either as two surfaces, one being transparent and sliding on top of the other (component motion) or as a single pattern whose direction of motion is intermediate to the component vectors (pattern motion). The degree of transparency, and hence the perception, can be manipulated by changing only the luminance of the grating intersections. Here we show that neurons in two visual cortical areas--A18 and PMLS--synchronize their discharges when responding to contours of the same surface but not when responding to contours belonging to different surfaces. The amplitudes of responses correspond to previously described rate predictions for component and pattern motion, but, in contrast to synchrony, failed to reflect the transition from component to pattern motion induced by manipulating the degree of transparency. Thus, dynamic changes in synchronization could encode, in a context-dependent way, relations among simultaneous responses to spatially superimposed contours and thereby bias their association with distinct surfaces.  相似文献   

16.
Nishida S  Johnston A 《Nature》1999,397(6720):610-612
After adaptation of the visual system to motion of a pattern in a particular direction, a static pattern appears to move in the opposite direction-the motion aftereffect (MAE). It is thought that the MAE is not accompanied by a shift in perceived spatial position of the pattern being viewed, providing psychophysical evidence for a dissociation of the neural processing of motion and position that complements anatomical and physiological evidence of functional specialization in primate and human visual cortex. However, here we measure the perceived orientation of a static windmill pattern after adaptation to rotary motion and find a gradual shift in orientation in the direction of the illusory rotation, though at a rate much lower than the apparent rotation speed. The orientation shift, which started to decline within a few seconds, could persist longer than the MAE, and disappeared when the MAE was nulled by physical motion of the windmill pattern. Our results indicate that the representation of the position of spatial pattern is dynamically updated by neurons involved in the analysis of motion.  相似文献   

17.
运用斜向运动及变速率运动实验模式,考察了运动对颜色信息整合的影响.实验发现:原先在眼动跟踪斜向运动刺激物和固视匀速运动刺激物时,都能发生的颜色信息整合现象,在分别变为固视斜向运动和变速运动刺激物时均不再发生.这表明,颜色整合起源于高级视觉皮层的流行观念是错误的.  相似文献   

18.
鸟类离顶盖通路的结构和电生理特性   总被引:5,自引:0,他引:5  
离顶盖通路是鸟类主要的视觉通路之一, 由视网膜、视顶盖、圆核和外纹体组成. 各结构之间具有区域性的对应投射;通路中的神经细胞具有不同的感受野特性, 对不同形式的刺激呈现出不同的反应模式. 参与物体运动方向和物体的朝向分析、运动物体的速度检测、颜色和物体轮廓处理、图象-背景识别、视觉指导定位、捕食和逃避反应等.离顶盖通路侧重于加工关于目标运动的特殊视觉信号,而对自身引起的视觉运动不敏感.  相似文献   

19.
Mizukami T  Wallis SR  Yamamoto J 《Nature》2004,427(6973):432-436
Tectonic plate motion is thought to cause solid-state plastic flow within the underlying upper mantle and accordingly lead to the development of a lattice preferred orientation of the constituent olivine crystals. The mechanical anisotropy that results from such preferred orientation typically produces a direction of maximum seismic wave velocity parallel to the plate motion direction. This has been explained by the existence of an olivine preferred orientation with an 'a-axis' maximum parallel to the induced mantle flow direction. In subduction zones, however, the olivine a axes have been inferred to be arranged roughly perpendicular to plate motion, which has usually been ascribed to localized complex mantle flow patterns. Recent experimental work suggests an alternative explanation: under conditions of high water activity, a 'B-type' olivine preferred orientation may form, with the a-axis maximum perpendicular to the flow direction. Natural examples of such B-type preferred orientation are, however, almost entirely unknown. Here we document widespread B-type olivine preferred orientation patterns from a subduction-type metamorphic belt in southwest Japan and show that these patterns developed in the presence of water. Our discovery implies that mantle flow above subduction zones may be much simpler than has generally been thought.  相似文献   

20.
Transparency and coherence in human motion perception   总被引:3,自引:0,他引:3  
When confronted with moving images, the visual system often must decide whether the motion signals arise from a single object or from multiple objects. A special case of this problem arises when two independently moving gratings are superimposed. The gratings tend to cohere and move unambiguously in a single direction (pattern motion) instead of moving independently (component motion). Here we report that the tendency to see pattern motion depends very strongly on the luminance of the intersections (that is, to regions where the gratings overlap) relative to that of the gratings in a way that closely parallels the physics of transparency. When the luminance of these regions is chosen appropriately, pattern motion is destroyed and replaced by the appearance of two transparent gratings moving independently. The observations imply that motion detecting mechanisms in the visual system must have access to tacit 'knowledge' of the physics of transparency and that this knowledge can be used to segment the scene into different objects. The same knowledge could, in principle, be used to avoid confusing shadows with real object boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号