首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Bulk Al/Al_3Zr composite was prepared by a combination of mechanical alloying(MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600℃ for 1 h to form stable Al_3Zr. The prepared Al_3Zr powder was then mixed with the pure Al powder to produce an Al–Al_3Zr composite. The composite powder was finally consolidated by hot extrusion at 550℃. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600℃ for 1 h led to the formation of a stable Al_3Zr phase. Differential scanning calorimetry(DSC) results confirmed that the formation of Al_3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al_3Zr structure. The tension yield strength of the Al-10wt%Al_3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al(53 MPa). The yield stress of the Al/Al_3Zr composite at 300℃ is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.  相似文献   

2.
High-entropy alloys (HEAs) have attracted increasing attention because of their unique properties, including high strength, hardness, chemical stability, and good wear resistance. Powder metallurgy is one of the most important methods used to fabricate HEA materials. This paper introduces the methods used to synthesize HEA powders and consolidate HEA bulk. The phase transformation, microstructural evolution, and mechanical properties of HEAs obtained by powder metallurgy are summarized. We also address HEA-related materials such as ceramic–HEA cermets and HEA-based composites fabricated by powder metallurgy.  相似文献   

3.
High-entropy alloys(HEAs) have attracted increasing attention because of their unique properties, including high strength, hardness,chemical stability, and good wear resistance. Powder metallurgy is one of the most important methods used to fabricate HEA materials. This paper introduces the methods used to synthesize HEA powders and consolidate HEA bulk. The phase transformation, microstructural evolution, and mechanical properties of HEAs obtained by powder metallurgy are summarized. We also address HEA-related materials such as ceramic–HEA cermets and HEA-based composites fabricated by powder metallurgy.  相似文献   

4.
The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr(wt%) alloy has been investigated.The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress(around 100 MPa). After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation of α precipitates, the β-stabilizers are not enriched in the parent β matrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability of β phase. The low stability of β phase and the small volume fraction of α precipitates produce a low Young’s modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.  相似文献   

5.
The evolutions of phase constitutions and mechanical properties of a β-phase Ti–36Nb–5Zr(wt%) alloy during thermo-mechanical treatment were investigated. The alloy consisted of dual(β t α″) phase and exhibited a double yielding phenomenon in solution treated state. After cold rolling and subsequent annealing at 698 K for 20 min, an excellent combination of high strength(833 MPa) and low modulus(46 GPa) was obtained. The high strength can be attributed to high density of dislocations, nanosized α phase and grain refinement. On the other hand, the low Young's modulus originates from the suppression of chemical stabilization of β phase during annealing, which guarantees the low β-phase stability. Furthermore, the single-crystal elastic constants of the annealed Ti–36Nb–5Zr alloy were extracted from polycrystalline alloy using an in-situ synchrotron X-ray technique. The results indicated that the low shear modulus C44 contributes to the low Young's modulus for the Ti–36Nb–5Zr alloy, suggesting that reducing C44 through thermo-mechanical treatment might be an efficient approach to realize low Young's modulus in β-phase Ti alloys. The results achieved in this study could be helpful to elucidate the origin of low modulus and sheds light on developing novel biomedical Ti alloys with both low modulus and high strength.  相似文献   

6.
Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600℃ for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550℃. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600℃ for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300℃ is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.  相似文献   

7.
A cold rolled dual phase (DP) steel with the C-Si-Mn alloy system was trial-produced in the laboratory, utilizing a Gleeble-3800 thermal simulator. The effects of continuous annealing parameters on the mechanical properties and microstructures of the DP steel were investigated by mechanical testing and microstructure observation. The results show that soaking between 760 and 820℃ for more than 80 s, rapid cooling at the rate of more than 30℃/s from the quenching temperature between 620 and 680℃, and overaging lower than 300℃ are beneficial for the mechanical properties of DP steels. An appropriate proportion of the two phases is one of the key factors for the favorable properties of DP steels. If the volume fraction of martensite and, thereby, free dislocations are deficient, the tensile strength and n value of DP steels will decrease, whereas, the yield strength will increase. But if the volume fraction of martensite is excessive to make it become a dominant phase, the yield and tensile strength will increase, whereas, the elongation will decrease obviously. When rapid cooling rate is not fast enough, pearlite or cementite will appear, which will degrade the mechanical properties. Even though martensite is sufficient, if it is decomposed in high temperature tempering, the properties will he unsatisfied.  相似文献   

8.
A metastable P-type Ti-30Nb-lMo-4Sn alloy with ultralow elastic modulus and high strength was fabricated.Under the solution treatment state,the Ti-30Nb-1Mo-4Sn alloy possesses low yield strength of about 130 MPa owing to the presence of the coarse α " martensitic laths.Upon a cold rolling and annealing process,the martensitic transformation from β to α" is significantly retarded due to the inhibitory effect of grain boundaries and dislocations.As a result,the metastable β phase with low total amount of β-stabilizers is retained to room temperature,giving rise to a low modulus of 45 GPa.Meanwhile,nano-sized a precipitates and dislocation tangles play a key role in strengthening the Ti-30Nb-1Mo-4Sn alloy,resulting in a high tensile strength of ~ 1000 MPa.With low elastic modulus and high strength,the metastable P-type Ti-30Nb-1Mo-4Sn alloy could be a potential candidate for biomedical materials.  相似文献   

9.
Ti_(50)Zr_(27)Cu_8Ni_4Co_3Fe_2Al_3Sn_3(at%) amorphous filler metal with low Cu and Ni contents in a melt-spun ribbon form was developed for improving mechanical properties of Ti–6Al–4V alloy brazing joint through decreasing brittle intermetallics in the braze zone. Investigation on the crystallization behavior of the multicomponent Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous alloy indicates the high stability of the supercooled liquid against crystallization that favors the formation of amorphous structure. The Ti–6Al–4V joint brazed with this Ti-based amorphous filler metal with low total content of Cu and Ni at 1203K for 900s mainly consists of α-Ti, β-Ti,minor Ti–Zr-rich phase and only a small amount of Ti_3Cu intermetallics, leading to the high shear strength of the joint of about 460 MPa. Multicomponent composition design of amorphous alloys is an effective way of tailoring filler metals for improving the joint strength.  相似文献   

10.
The high temperature properties of AISI 304 stainless steel were studied. Basic data about the employed experimental equipment, testing procedures, and specimen geometry were given. The experimental setup was used to obtain stress-strain diagrams from tensile tests at room temperature as well as several elevated temperatures. Furthermore, the specimens were subjected to short-time creep tests at various temperatures. Stress levels for creep testing were established as a percentage of yield stress. The results indicate that at lowered temperatures and lower stress levels, AISI 304 stainless steel can be used as a sufficiently creep resistant material.  相似文献   

11.
This paper deals with microstructural evolutions and mechanical properties of Nb-Si binaries containing dual-phase Nb/Nb5Si3 with Nb to Nb5Si3 fraction ratios of 90:10,80:20,70:30 and 50:50,prepared by spark plasma sintering(SPS).Dense Nb/Nb5Si3 samples with a relative density larger than 99.5% were obtained by SPS processing.The SPS samples consist of the Nb and Nb5Si3 phases with less than 3% fraction of NbO oxide.Hv at room temperature,and compressive strength at 1150℃ and 1250 1C of the bulk SPS alloys increase monolithically by enhancing fraction of the stiffening Nb5Si3 phase.For example,0.2% yield strength,σ0.2,increases from 175 MPa to 420 MPa at 1150℃ and from 110 MPa to 280 MPa at 1250℃,when the Nb5Si3 fraction increases from 10% to 50%.It is interesting that the fracture toughness,KQ,of the bulk SPS samples seems not to be sensitive to phase fraction.Heat treatment,however,plays a key role on the KQ as compared with that of the as-sintered state,at the corresponding Nb5Si3 fraction and considerably improves the KQ by about 100% for samples with the Nb5Si3 fractions of 10%-30%,and by about 50% for the sample with 50% Nb5Si3 fraction.  相似文献   

12.
a’ phase based Ti-Nb-Zr alloys with low Young’s modulus and high strength were prepared,and their microstructure and mechanical properties were characterized.It was revealed that the lattice expansion by Nb and Zr addition as well as the presence of a few of a" martensite might be responsible for the low modulus achieved.Ti-15Nb-9Zr alloy,with ultralow modulus of 39 GPa and high strength of850 MPa,could be a potential candidate for biomedical applications.  相似文献   

13.
Ti-Cu-Zr-Fe-Nb ultrafine structure-dendrite composites were designed by inducing Nb and more Ti to a Ti-Cu-Zr-Fe glass-forming alloy composition and prepared by copper mold casting.The composite alloys consist of β-Ti dendrites and ultrafine-structured CuTi2 and CuTi phases as well as a trace amount of glassy phase.The volume fraction of β-Ti dendrites increases with the increase in content of Nb which acted as the β-Ti phase stabilizer in the alloys.The composites exhibit high compressive yield strength exceeding1200 MPa,maximum strength around 1800 MPa and low Young’s modulus around 48 GPa.The plasticity of the alloys is strongly influenced by the volume fraction and morphology of the dendritic β-Ti phase,and the compressive plastic strain was enlarged from 5.9%for the 4 at%Nb alloy to 9.2%for the 8 at%Nb alloy.The preliminary cell culture experiment indicated good biocompatibility of the composite alloys free from highly toxic elements Ni and Be.These Ti-based composite alloys are promising to have potential structural and biomedical applications due to the combination of good mechanical properties and biocompatibility.  相似文献   

14.
The tensile properties and fracture behavior of a cast nickel-base superalloy K445 in the temperature range of 25-1 000℃were investigated.The microstructure and fracture surfaces of the alloy were investigated by OM,SEM and TEM.The results revealed that an anomalous yield strength phenomenon exists in the alloy at medium high temperature.The yield strength decreases gradually with the increase of temperature,reaches the minimum value at 650℃,and then increases again to obtain 940 MPa,which is almost the ...  相似文献   

15.
Mechanical properties and microstructure changes have been investigated on a new nickel-base superalloy after long-term aging at 700℃. It is found that the major precipitates of the tested alloy are MC, M23C6, M6C and γ' in the course of long-term aging at 700℃. The carbides maintain good thermal stability with the aging time up to 5008 h. The growth rate of gamma prime precipitates is relatively high in the early aging period and then slows down. The coarsening behavior of gamma prime follows a diffusion-controlled growth procedure. The room temperature Rockwell hardness of the alloy aged at 700℃ increases slightly at the initial stage of aging, but it decreases with the prolonged time. It mainly depends on the size of gamma prime. In comparison with Nimonic lloy 263, the new alloy characterizes with higher tensile and stress-rupture strengths at high temperatures. The new nickel-base superalloy offers a combination of microstructure stability, strength, ductility and toughness at 700℃.  相似文献   

16.
The hot deformation behavior of a newly developed 51.1Zr–40.2Ti–4.5Al–4.2 V alloy was investigated by compression tests in the deformation temperature range from 800 to 1050 ℃ and strain rate range from 10-3to 100 s-1. At low temperatures and high strain rates, the flow curves exhibited a pronounced stress drop at the very beginning of deformation, followed by a slow decrease in flow stress with increasing strain. The magnitude of the stress drop increased with decreasing deformation temperature and increasing strain rate. At high temperatures and low strain rates, the flow curves exhibited typical characteristics of dynamic recrystallization. A hyperbolic-sine Arrhenius-type equation was used to characterize the dependences of the flow stress on deformation temperature and strain rate. The activation energy for hot deformation decreased slightly with increasing strain and then tended to be a constant value. A microstructural mechanism map was presented to help visualize the microstructure of this alloy under different deformation conditions.  相似文献   

17.
In this study, the mechanical properties of tungsten-rhenium wires with nanofibrous microstructure were investigated at both room temperature (RT) and 800℃. The strengthening mechanism associated to the nanofibrous microstructure was discussed. The results showed that the tungsten-rhenium wires with nanofibrous grains exhibited a very high tensile strength reaching values of 3.5 GPa and 4.4 GPa for the coarse (grains diameter of 240 nm) and fine (grains diameter of 80 nm) wires, respectively. With increasing the temperature from RT to 800℃, the tensile strength decreased slightly but still held high values (1.8 GPa and 3.8 GPa). All the fracture surfaces exhibited apparent necking and characteristics of spear-edge shaped fracture surface, indicating excellent ductility of the wires. A model of the strengthening mechanism of these tungsten-rhenium wires was proposed.  相似文献   

18.
In this paper,a large-sized ingot of Mg–9Gd–3Y–1.5Zn–0.5Zr(wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method.The alloy was subsequently annealed at a relatively low temperature of 430°C for 12 h as a homogenization treatment.The microstructure and room-temperature mechanical properties of the alloy were investigated systematically.The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18 R long-period stacking ordered(LPSO) phases with a composition of Mg10 Zn Y and an α-Mg matrix,along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries.Most of the eutectic compounds dissolved after the homogenization treatment.Moreover,the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment.The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd).The mechanical properties of the heat-treated large-sized alloy ingot are uniform.The ultimate tensile strength(UTS) and tensile yield strength(TYS) of the alloy reached 207.2 MPa and 134.8 MPa,respectively,and the elongation was 3.4%.The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.  相似文献   

19.
The hardness, tensile strength and impact toughness of one quenched and tempered steel with nominal composition of Fe0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both at room temperature and at elevated temperatures were investigated in order to develop high-strength steel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensile strength at elevated temperature in comparison with the commonly used G4335V high-strength gun steel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strength of the steel is attributed to the strong secondary hardening effect and high tempering softening resistance caused by the tempering precipitation of fine Mo-rich M2C carbides in the α-Fe matrix. The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, its room-temperature impact energy is much higher than the normal requirement of impact toughness for high strength gun steels. Therefore, the steel is suitable for production of long-life high-strength gun barrels with the combination of superior elevated-temperature strength and good impact toughness.  相似文献   

20.
The effect of strain rate on the yield strength of high Nb containing TiAl alloy was studied. The results show that the strain rate sensitivity varies with the test temperature, and the yield strength is not sensitive to the strain rate at room temperature but significantly sensitive to the strain rate at high temperature. An increase of the strain rate or a decrease of the temperature results in an obvious change of fracture mode. It is found that the strain rate sensitivity of this alloy varying with temperature is due to the dislocation climb generated at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号