首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
提出了一种伴随场的方法,用以分析温度场中局部材料参数改变时对原有场的扰动及扰动后温度场的计算问题,通过选择适当的伴随场,可以以原有温度场为基础,对扰动后的温度场进行计算。  相似文献   

2.
本研究应用Spalding数值计算方法,移植顶吹转炉成功的数模与计算软件,加入电磁场洛仑兹力,在理论分析的基础上研制了30t底电极直流电弧炉熔池电磁流场温度场数学模型,开发了计算软件,计算了流场、温度场。  相似文献   

3.
将相移技术首次应用于电子散斑干涉计量测量火焰的温度场,在计算机控制下采集数据和计算相位,在计算温度时,采用了新的求解方法,重建的温度场与热电偶实测值一致。  相似文献   

4.
DC—EAF熔池电磁搅拌与传热的数值计算   总被引:2,自引:0,他引:2  
本研究应用Spalding数值计算方法,移植顶吹转炉成功的数值与计算软件,加入电磁场洛仑兹力,在理论分析的基础上研制了30t底电极直流弧炉熔池电磁流场温度场数学模型,开发了计算软件,计算了流场,温度场。  相似文献   

5.
基于耦合方法的干式空心阻尼电抗器温度场计算   总被引:1,自引:0,他引:1  
建立了空心阻尼电抗器磁场—电路—流场—温度场的耦合计算模型,该模型肯先通过磁场—电路耦合计算得到磁场、电感和电流,然后将磁场—电路耦合计算得到的焦耳热作为流场—温度场耦合计算的热源,得到空心阻尼电抗器的气流场和温度场分布.以一种空心阻尼电抗器为例,给出了耦合计算得到的温度场分布,并将温度计算值与实测值作了比较,比较结果表明,该方法具有较高的计算准确度.在空心阻尼电抗器设计中应用上述方法,不需要事先指定对流换热系数,在产品开发阶段即可完成热性能分析,从而降低试验成本,缩短设计周期.  相似文献   

6.
基于生长单元网格浮动的碾压混凝土坝温度场分析   总被引:5,自引:0,他引:5       下载免费PDF全文
针对碾压混凝土坝(RCCD)成层施工和材料成层的结构特点,引入非均质层合单元和生长单元的概念,提出随着生长单元不断并层生长和网格的浮动,能仿真模拟RCCD的成层浇筑施工过程的算法。同时,对某一高RCCD从施工期到运行期的温度场变化全过程进行计算分析,论证了入仓温度对大坝温度场的影响,探讨了该坝温度场的特性,为温控方案的确定提供了定依据。利用该算法,能达到坝体三维不稳定温度场计算的仿真,并可大大减少计算单元数,使得RCCD不稳定温度场的仿真计算在不降低计算精度的前提下可有效地控制解题规模和提高计算效率。  相似文献   

7.
研究在不同太阳辐射作用下双层玻璃幕墙热通道气流,建立相关的流场和温度场状态方程组,计算双层玻璃幕墙冬季增热保温和夏季热气流降温的节能性能。通过双层玻璃幕墙的实体模型试验,观察流场结构,温度场变化,实测相关参数。最后开发有限分析计算软件,并给出计算实例。  相似文献   

8.
为了揭示沥青路面传热机理,研究了热风冲击射流对流换热和沥青路面内部导热的共轭传热过程,建立了热风加热沥青路面的冲击射流湍流共轭传热理论模型,采用大涡模拟研究了沥青路面温度场分布,获得了沥青路面温度场样本数据.利用本征正交分解法(POD)对温度场样本数据进行降阶处理,选取径向基函数插值方法,预测出了沥青路面温度场分布.仿真和实验结果表明:热风加热沥青路面冲击射流的湍流模型计算结果与实验温度的平均误差为5.4%;温度场预测精度随着选取模态阶数的增大而增强,采用POD分解与径向基函数插值方法计算温度场耗时仅为数值计算时间的0.63%,实现了沥青路面温度场快速且高精度的预测.  相似文献   

9.
在火灾作用下,钢筋混凝土构件温度场的确定不仅是构件高温力学性能分析的重要前提,也是制定灾后结构修复加固方案的重要依据.该文利用加权余量法中的Galerkin法和向后差分法,推导并建立了用于钢筋混凝土构件温度场计算的有限元方程.分析中考虑了混凝土热工性能参数随温度变化的特性,并采用热流平衡迭代过程来提高温度场的求解精度.在理论研究的基础上,以Matlab语言为开发平台,编制了钢筋混凝土构件温度场分析程序TFARC(Temperature Field Analysis of RC),可以进行稳态、线性瞬态以及非线性瞬态温度场的分析.最后,利用程序的数值计算结果与试验数据及有精确解的温度场问题进行了对比研究,结果表明利用该程序进行钢筋混凝土构件的温度场分析是可靠的.  相似文献   

10.
计算比较了不同边界条件下混凝土浇筑层温度场的理论解答,证实目前运用的第三类边界条件下的解答在边界附近严重“失真”,而第一类虚边界条件下的解答不但形式简单,计算方便,而且结果稳定,能反映温度场的边界特征。  相似文献   

11.
MoCu球铁激光淬火过程温度场的数值计算   总被引:6,自引:1,他引:6  
根据激光淬火过程的特点及复杂性,提出用有限元方法计算激光淬火过程中温度场及组织分布的传热学数学模型;在计算中对热物性值随温度的变化进行了分段线性回归处理;激光淬火属快速加热范畴,奥氏体化点相应提高.相变潜热则根据相变量的多少以温升、温降的形式加以处理.以MoCu球铁为例对不同激光处理参数下的温度场及组织分布进行了计算及实验验证.  相似文献   

12.
Yamaguchi A  Kobayashi S  Ishimoto H  Kojima H 《Nature》2006,444(7121):909-912
The magnetic properties of (3)He in its various phases originate from the interactions among the nuclear spins. The spin-polarized 'ferromagnetic' superfluid (3)He A(1) phase (which forms below 3 mK between two transition temperatures, T(c1) and T(c2), in an external magnetic field) serves as a material in which theories of fundamental magnetic processes and macroscopic quantum spin phenomena may be tested. Conventionally, the superfluid component of the A(1) phase is understood to contain only the majority spin condensate, having energetically favoured paired spins directed along the external field and no minority spin condensate having paired spins in the opposite direction. Because of difficulties in satisfying both the ultralow temperature and high magnetic field required to produce a substantial phase space, there exist few studies of spin dynamics phenomena that could be used to test the conventional view of the A(1) phase. Here we develop a mechanical spin density detector that operates in the required regime, enabling us to perform measurements of spin relaxation in the A(1) phase as a function of temperature, pressure and magnetic field. Our mechanical spin detector is based in principle on the magnetic fountain effect; spin-polarized superfluid motion can be induced both magnetically and mechanically, and we demonstrate the feasibility of increasing spin polarization by a mechanical spin filtering process. In the high temperature range of the A(1) phase near T(c1), the measured spin relaxation time is long, as expected. Unexpectedly, the spin relaxation rate increases rapidly as the temperature is decreased towards T(c2). Our measurements, together with Leggett-Takagi theory, demonstrate that a minute presence of minority spin pairs is responsible for this unexpected spin relaxation behaviour. Thus, the long-held conventional view that the A(1) phase contains only the majority spin condensate is inadequate.  相似文献   

13.
根据制备过程中碳纤维骨架内煤油发生相变时的气液两相流动与传热传质、预制体对煤油的导热以及碳纤维多孔介质内的传热传质性质,建立了描述碳纤维骨架内温度场分布与相变特性的数学模型.对采用感应加热方式、直径为70 mm的顸制体在汽化温度为453.15 K时的制备过程进行了数值研究,得到了骨架内温度场随时间的变化.给出了不同时刻的温度场分布、径向温度随时间的变化规律,以及相变过程含气率沿径向的分布.将计算所得的电加热功率与制备过程中实际的电加热功率进行了比较,二者较为接近,验证了所建数学模型的可靠性.  相似文献   

14.
注射螺杆流道熔体非等温流场的数值研究   总被引:1,自引:0,他引:1  
使用CFD软件Polyflow,数值模拟了注塑机塑化和注射过程中两种止逆螺杆流道内聚丙烯熔体的三维非等温流场,讨论了流道内熔体的温度场、剪切速率场、黏度场和黏性热场.研究结果表明,塑化时,35°锥角比60°锥角螺杆流道内的熔体在螺杆头区域的温度高;注射时,35°锥角较60°锥角螺杆流道内熔体在出口处的温度和黏度都均匀.表明35°锥角螺杆与机筒配合得较好,更利于注塑成型.数值计算对比了60°锥角螺杆流道内熔体的非等温和等温流场,在螺杆头某一截面上非等温时熔体的平均黏度值比等温时的减少24%.温度影响熔体流场中各物理量的变化.非等温流场更能反映实际情况.  相似文献   

15.
本文是在外电场中冷却液晶进入近晶相,在不同温度条件下去掉外场,观察液晶织构的变化,并测定弛豫时间与温度的关系。  相似文献   

16.
建议高密物质中子化后出现夸克集团相,这是一种带色的中子.分析了相应温度和密度.讨论了新相的自族长程序和类铁磁的畴状结构.  相似文献   

17.
连续铸造稳态温度场非物理边界条件的确定   总被引:4,自引:1,他引:3  
建立了描述连续铸造过程的温度场模型,用外推法得出凝固金属在结晶器出口侧的非物理边界条件模型,使稳态温度场的计算精确高效.利用该温度场模型及非物理边界条件模型计算了Al-Cu合金在半连续铸造过程中的稳态温度场,并以此确定的介观温度场作为液固相变模拟的条件,用多尺度计算技术模拟了Al-10%Cu合金在不同浇注温度时的凝固组织,得到了晶粒形貌和分布合理的微观组织.对ZL201合金的近液相线铸造组织的模拟结果与实验吻合.研究表明:该温度场模型及非物理边界条件模型适于稳态连续铸造过程的模拟,并可为金属凝固组织的多尺度模拟提供正确的温度场数据.  相似文献   

18.
基于简单偶极子模型计算磁流变液体系的自由能,考虑了体系中粒子的渗透压,研究磁流变液的液固相变.结果发现当外加磁场超过一临界值时,体系发生由液相向固相的转变,同时温度变化也引起磁流变液的相变.  相似文献   

19.
以Fe4N为原型,构建在晶场作用下的混自旋Ising模型。利用平均场理论,得到该模型的磁矩和自由能公式;绘制了不同相互作用下的磁化曲线;研究了系统的磁性质。发现系统发生了丰富的相变特性:系统存在一级有序-无序相变、重入现象和二级相变;晶场D_A/|J_1|和D_B/|J_1|对系统的磁性质所起作用相似。随着晶场的增加,一级有序-无序相变的温度升高,重入现象的温度降低;一级有序-无序相变和重入现象的温度间距逐渐缩小,直至这两种相变消失。  相似文献   

20.
寒区隧道土体中的水分迁移和相变是冻害问题的主要诱因.基于混合物理论,建立考虑水分迁移和水冰相变的联合求解微分方程对水热耦合问题进行求解,并使用 COMSOL Multi-physics 软件进行模块开发,实现渗流-温度耦合数值模拟,进而将模拟结果与土柱冻结实验的结果进行对比,证明水热耦合模型是正确的.最后以西藏自治区米林隧道为例,对温度场、水分场模拟分析并对是否考虑水分迁移的温度场进行对比.结果表明:随着时间的增加,隧道顶部边界气温由-0.82℃降低到-9℃,隧道内部边界温度由-0.74℃ 降低到-11.11℃,并在3月份隧道温度回升;含冰量峰值出现在1月份,在3月份含冰量开始下降.同时,未考虑水分迁移的温度场中热传导速度较快,证明相变潜热对隧道中温度场的分布影响远大于液态水靠重力迁移造成的热对流传热.研究成果直观反映富水寒区隧道的冻害发生过程,具有一定的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号