首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
基因是遗传信息的载体,是实现一定遗传功能的基本单位,是有一定物质结构的实体。认识基因的本质,始终是贯串在遗传学研究中的一条主线。除少数生物的基因是RNA分子外,绝大多数生物的基因是DNA分子。DNA有少量存在于细胞质里的细胞器中,绝大部分在染色体中,真核细胞的染色体都在细胞核里。基因、  相似文献   

2.
正病毒 virus 由RNA或DNA及蛋白质等组成的、专营细胞内感染和复制的结构简单的微生物。正链单链RNA病毒 positive-stranded single-stranded RNA virus 遗传物质为正链单链RNA的一类病毒的总称。进入宿主细胞后可直接作为模板合成病毒蛋白质。冠状病毒 coronavirus 电子显微镜下状似皇冠的一类病毒。为具有外膜的正链单链RNA病毒,直径80~120 nm,RNA长27~31 kb  相似文献   

3.
基因组 genomeGenome这个名词于1922年第一次出现在遗传学文献中。中文译名为染色体组,后又译为基因组。随着遗传学研究的进展对基因组的涵义不断地赋以新的内容。一般的定义是单倍体细胞中的全套染色体为一个基因组,或是单倍体细胞中的全部基因为一个基因组。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。比如,人基因组中编码序列只占5%左右,换言之,人基因组中的非编码序列占95%以上。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。说得更确切些,核基因组是单倍体细胞核内的全部DNA分子;线粒体基因组则是一个线粒体所包含的全部DNA分子;叶绿体基因组则是一个叶绿体所包含的全部DNA分子。当然,也有人指出基因组应定义为一个细胞中所携带的全部遗传学指令。这是从基因组的功能着眼,因为基因组中的基因携带着编码产生蛋白质或RNA的遗传指令,同时基因组中的非编码序列携带着启动和调控基因活动的遗传指令。但是,基因组如果定义为全部遗传指令,那么,基因组的测序、作图和基因识别等就不易被人理解,遗传指令又怎么测序和作图呢?人类基因组计划 human genome project,HGP一般是指于1990年美国政府资助启动的研究人类基因组的计划。它被认为是生命科学研究领域中有史以来的第一个“大科学”项目,其意义和影响被誉为不亚于研究原子弹的“曼哈顿计划”和载人飞船登月的“阿波罗计划”。以后世界各国也都有各自的研究人类基因组的计划。HGP的主要内容是美国计划从1990至2005年间,历时15年,资助30亿美元,测定人类基因组的30亿对核苷酸的排列次序。由于实验操作上的考虑,必须把基因组DNA分子先打断成无数个小片段,然后测定每个小片段的核苷酸序列,最后把小片段连接回复到整个基因组。因此在测序前要先作图(mapping),即把每个小片段在整个基因组上的位置确定下来,以便今后可以有序地把小片段连接起来。HGP的工作内容除了作图和测序外,还有基因识别,模式生物(如大肠杆菌、酵母、果蝇、线虫和小鼠等)基因组的测序,发展生物信息学(bioinformatics)和研究HGP对伦理、法律和社会带来的冲击和影响等。在HGP实施过程中,特别是基因识别和基因克隆的成果,显现出巨大的商机。于是一些大跨国公司特别是医药行业的大财团纷纷斥巨资介入人类基因组研究领域。1998年5月美国的塞莱拉基因组学公司(Celera Genomics Inc.)宣布将于2001年完成人类基因组的工作草图(working draft),并于2003年最终完成人类基因组测序,在此态势下,美国政府也于1998年10月宣布调整HGP的工作进度,提前于2003年底前完成基因组测序。2000年6月26日,有美、英、德、日、法和中国参加的国际人类基因组测序联合体与美国塞莱拉公司联合宣布各自分别完成了人类基因组的“工作草图”。中国承担并完成了人类基因组1%的测序,即测定3000万对核苷酸序列。人类基因组工作草图 human genome “working draft”人类基因组的作图和测序是一个由粗到精的过程,是先把整个基因组打断成小片段,然后再把小片段连接复原。工作草图又称框架图,是一幅粗线条地绘制成的基因组图,它的特点有三:①应包含人体绝大多数基因的序列;②由于作图是由小片段连缀而成,所以会因丢失小片段而在图上留下空档(gap),工作草图可以留下空档,但对整个基因组的覆盖率应在90%以上;③草图中核苷酸序列的差错率可以高于最终所要求的万分之一,但不能超过百分之一。作图 mapping基因组研究中,确定遗传标记如基因、酶切位点、特定的DNA序列等在染色体上的位置,并计算它们之间的距离,称为作图。图可以分为遗传图(或遗传连锁图)、物理图两种。遗传图是根据两个遗传标记之间发生重组的频率来确定彼此在染色体上的位置和距离。两者相距远,发生重组的频率高;两者相距近,则连锁很紧密,不易发生重组。如果两个遗传标记分别位于两条染色体上也就不会发生重组。重组发生在细胞减数分裂期间,因此要分析上下代的染色体上的遗传标记出现的频率方能计算出两个标记在染色体上的相对距离。物理图则是把遗传标记直接定位在染色体DNA分子上,彼此间的距离也可用碱基对的多少来标定。基因组DNA测序后的全序列图是最精密的物理图,因为这幅图表明了几十亿个核苷酸的排列次序,标记物就是单个核苷酸。叠连群 contig一组克隆载体中插入的DNA片段,可通过末端的重叠序列相互连接成为一个连续的DNA长片段,这一组DNA片段即构成了一个叠连群。叠连群主要用于DNA测序和基因组作图。因为DNA的测序和作图时,一个很长的DNA分子在实验时是无法操作的,必须把它先切割成为小片段,然后把小片段连接起来,就是通过两个小片段末端共有的序列,相互叠加而连成长片段。因此,叠连群中小片段之间叠加的相同序列越短,研究工作效率则越高。表达序列标签 EST,expressed sequence tag在人类基因组研究中,有一个区别于“全基因组战略”的“cDNA战略”,即只测定转录的DNA序列,也就是测定基因转录产物mRNA反转录产生的互补DNA——cDNA。cDNA代表了基因中编码蛋白质的序列。EST则是cDNA的一个片段,一般长200~400个核苷酸对。一个全长的cDNA分子可以有许多个EST,但特定的EST有时可以代表某个特定的cDNA分子。两端有重叠的共有序列的EST可以组装成一个叠连群(contig),直到装配成全长的cDNA序列,这样就等于是克隆了一个基因的编码序列。将EST定位在基因组,也可作为基因组作图时的一种标记序列。互补DNA cDNA,complementary DNA信使RNA(mRNA)分子的双链DNA拷贝。构成基因的双链DNA分子用一条单链作为模板,转录产生与其序列互补的信使RNA分子,然后在反转录酶的作用下,以mRNA分子为模板,合成一条与mRNA序列互补的单链DNA,最后再以单链DNA为模板合成另一条与其互补的单链DNA,两条互补的单链DNA分子组成一个双链cDNA分子。因此,双链cDNA分子的序列同转录产生的mRNA分子的基因是相同的。所以一个cDNA分子就代表一个基因。但是cDNA仍不同于基因,因为基因在转录产生mRNA时,一些不编码的序列即内含子被删除了,保留的只是编码序列,即外显子。所以cDNA序列都比基因序列要短得多,因为cDNA中不包括基因的非编码序列——内含子。克隆 clone用作名词时,克隆是指由遗传组成完全相同的分子、细胞或个体所组成的一个群体。例如,核苷酸序列完全相同的DNA片段或基因的众多份拷贝,就称为DNA分子克隆或基因克隆。来源同一个祖细胞的基因型完全相同的众多子细胞,就构成了一个细胞克隆。抗原分子刺激后会产生抗体分子,如果是一种抗原分子刺激后产生的是单克隆抗体;如果是多种抗原分子刺激后产生的则是多克隆抗体。通过无性繁殖获得相同基因型的生物体,这是个体克隆,也称为无性繁殖系。用作动词时,克隆是指运用DNA重组技术将某一特定基因或DNA序列,插入一个载体分子,然后将这个重组分子转入宿主细胞中复制增殖,使被插入的基因或DNA分子形成众多的拷贝。克隆也指分离出单个分子或单个细胞的操作过程。例如,克隆基因是指从基因组或DNA大片段中分离出某个基因或某种DNA序列;克隆细胞则是从许多类型的细胞群体中分离出某种特定类型的细胞。用作动名词(cloning)时,指分离出某一特定的基因、DNA分子或细胞后,用一些实验方法使在数量上增多以形成由许多份拷贝构成的一个群体,有时将这一过程称为克隆化。模式生物 model organism在人类基因组研究中十分注重模式生物的研究,这是由于要认识人体基因的功能,无法直接用人体作为实验对象。但是,生物是从共同祖先演化而来的,所以对生命活动有重要功能的基因在进化上是保守的,也就是说,这些基因的结构和功能,在低等生物和高等生物中是相似的。因此,可以用比较容易研究的生物作为模型来研究其基因的结构和生物学功能,由此获得的信息可以使用于其他比较难以研究的生物,特别是推测相似的人体基因的功能。例如,果蝇、小鼠甚至酵母等基因组都有与癌症发生相关的癌基因和抗癌基因,与细胞死亡、衰老有关的基因,以及与引起人类某些遗传病的相关基因。染色体 chromosome指经染料染色后用显微镜可以观察到的一种细胞器。在细菌中,染色体是一个裸露的环状双链DNA分子。在真核生物中,当细胞进行分裂期间染色体呈棒状结构。染色体的数目是随物种而异,但对每一物种而言,染色体的数目是固定的。比如人的染色体在二倍体细胞里是46条,在生殖细胞里则是23条。染色体是由线性双链DNA分子同蛋白质形成的复合物,真核生物的核基因就分藏在每条染色体中,所以,染色体是基因的载体,也就是遗传信息的载体。一个细胞里的全部染色体也就包含了这个生物体的全部遗传信息。序列 sequenceDNA分子是由4种核苷酸(A,T,G,C)排列组成,DNA序列就是组成某一DNA分子的核苷酸的排列次序。蛋白质的一级结构是由20种氨基酸线性排列构成。蛋白质序列就是构成某种蛋白质如氨基酸线性排列次序。因此,测序(sequencing)就是用实验方法,测定DNA分子中核苷酸的种类及其排列次序,或者测定蛋白质分子中氨基酸的种类及其排列次序。人基因组测序是指测定构成人基因组的约30亿个核苷酸的种类及其排列次序。基因组中的DNA序列可以分为两大类:一类是单一序列,即在基因组中这种核苷酸的排列次序只出现一次或只有一份拷贝;另一类是重复序列。指某种核苷酸排列次序在基因组出现的次数或其拷贝数少则几份,十几份,多的可达几万份甚至几十万份。构成基因的极大多数是单一序列。重复序列则基本上全是非编码序列,它们的生物学功能是一个尚未解开的谜团。遗传密码 genetic code这是支配信使RNA(mRNA)分子中4种核苷酸的线性序列,同由它编码的蛋白质中20种氨基酸的线性序列之间关系的法则。基因是DNA分子。DNA分子由4种核苷酸(A,T,G,C)排列组成。不同的基因所携带的不同的遗传信息,编码在不同的核苷酸序列中。遗传信息要翻译成另一种语言即蛋白质的氨基酸序列,才能实现其生物学功能。可是,DNA并不是直接把遗传信息传递给蛋白质,而是先转录成mRNA,然后以mRNA为中介来决定蛋白质中的氨基酸序列。一个线性mRNA分子的核苷酸序列,决定一个线性的蛋白质分子的氨基酸序列。mRNA同DNA一样,也是由4种核苷酸组成,所不同的只是mRNA用U代替了T,即A,U,G,C4种核苷酸。蛋白质由20种氨基酸组成。mRNA分子中的核苷酸以三个为一组,如AAA,AUA,AUG……构成了一个密码子;一个密码子决定一种氨基酸。mRNA的4种核苷酸组成的密码子可以有43=64种。64种密码子决定20种氨基酸。因此密码子是冗余的或简并的,即一种氨基酸可以有不止一个密码子。比如编码甘氨酸的密码子就有4个:GGU,GGC,GGA和GGG,编码精氨基酸的密码子则有6个:CGU,CGC,CGA,CGG,AGA和AGG。不同的基因有不同的核苷酸序列,决定不同的氨基酸序列,产生不同的蛋白质,行使不同的生物学功能,最后使生物体出现不同的性状。这种遗传密码是在20世纪60年代早期破译的。基因库 gene pool有性生殖生物的一个群体中,能进行生殖的个体所携带的全部基因,或全部遗传信息,或者是一个群体中所有个体的基因型的汇总。对二倍体生物而言,有N个个体的一个群体的基因库,由2N个单倍体基因组所组成。基因文库 gene library一个生物体的基因组DNA用限制性内切酶部分酶切后,将酶切片段克隆在载体DNA分子中,所有这些插入了基因组DNA片段的载体分子的集合体,将包含了这个生物体的整个基因组,也就是构成了这个生物体的基因文库。基因型分型 genotyping这是确定一条染色体上一些基因,DNA序列或遗传标记的连锁组合,实际上就是确定一条染色体上某个区段的单体型(haplotype)。现在有的译为基因分型是不够确切的,因为分型的不止有基因,而主要是遗传标记。共线性 synteny一个物种的基因组中相互连锁的基因,在另一物种的基因组中也是连锁关系,而且在两个物种的遗传图上的位置也是相似的。例如,人和小鼠之间就有一百多个共线区。在进化过程中一些基因始终保持着连锁关系,这意味着这种连锁可能在一定条件下具有选择上的某种优势。这对研究基因功能之间的相互关系提供了有用的线索。种间同源基因 ortholog不同物种中起源于一个共同的祖先基因的一些同源基因。这些基因通常保持着相同的或相似的功能。种内同源基因 paralog在进化过程中的一个基因通过重复而生成许多个基因,这些基因逐步分化成为不同的基因,这些不同的基因称为种内同源基因。例如,在脊椎动物进化过程中,祖先珠蛋白基因位置重复而后逐步分化成α珠蛋白基因、β珠蛋白基因和肌球蛋白基因等。混编 shufflingShuffling的原意是扑克牌的洗牌,54张牌在洗牌后可以有无数种的排列组合。在新基因的生成和基因进化研究中,借用shuffling这个词,提出了“外显子混编(exon shuffling)”和“结构域混编(domain shuffling)”等假说。即新的基因是由原来的基因打断后的断片混编而成的,或者是由编码蛋白质结构域的基因片段混编而成。这种基因片段可能就是外显子,因此称为外显子混编。表观遗传学 epigenetics研究基因的核苷酸序列不发生改变的情况下,基因表达出现了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化,基因组印记(genomic imprinting)和RNA编辑(RNA editing)等。朊粒 prion蛋白质性质的感染颗粒的简称。(我注意到对这个译名有不同的意见,已提出的有“朊病毒”,“感染朊”或干脆音译为“普立昂”。朊病毒有点牵强附会,prion并不具有病毒的特征。感染朊是可以考虑的,但不如朊粒简明。)酶性核酸 ribozyme具有酶一样催化活性的核酸分子,有的译为“核酶”似不大贴切。* 赵寿元教授是全国科学技术名词审定委员会第四届委员会委员;遗传学名词审定委员会主任(第二届)。(注:“小词典”栏中的词目并不都是经审定过的规范词。)  相似文献   

4.
正美国每日科学网站发表了题为《"聪明"的头足纲动物牺牲基因组进化来换取大量RNA编辑》的报道。章鱼、鱿鱼和乌贼以能够完成复杂的行为而闻名,比如打开水族箱的盖子逃走或是迅速改变皮肤伪装色以躲避捕食者。一项新研究显示,它们的神经系统在进化至如此复杂的过程中包含了一种与众不同的机制:牺牲基因组DNA的进化来换取大量的RNA编辑。这是由美国海洋生物  相似文献   

5.
RNA转录组学和功能组学的研究是目前生命科学领域的重要研究方向。生命的中心法则(由DNA转录RNA,再由后者翻译成行使各种功能的蛋白质)因调控RNA分子的发现而进一步得到扩展。最近的大量研究发现,自基因组中非蛋白质编码区转录的RNA分子具有重要的调控功能,即转录后的调控功能。在这些RNA分子中,内源性小干扰RNA分子、microRNA及piwi-RNA等的功能逐渐被揭示。本文对目前有关RNA转录组学研究进展做一简要综述。  相似文献   

6.
<正>美国科学家报告称,已揭示了细胞是如何修复双链断裂这样严重的DNA损伤。这种独特的修复机制,或将对基因突变等遗传学研究提供更多的解释。科学家们发现,当由于氧化、电离辐射、复制错误和某些代谢产物导致染色体的双链断裂时,细胞会利用遗传相似的染色体借助一种涉及断裂分子两端的机制来填补损伤部位。换句话说,为了修复遭受断裂损伤染色体,"绝望"的细胞会利用DNA复制机制中的一种独特结构来使细胞继续生存  相似文献   

7.
从太阳周年运动、回归运动、周日运动是地球公转和自传的反映看,太阳的3种视运动形式,对应着地球的两种基本运动形式,存在对应缺失问题。通过对地球在公转轨道上的宇宙形态进行研究,发现地球除公转和周日自转外,还有一种自转形式:“地球周年自转”,它和太阳回归运动相对应。地球在公转的同时自东向西相对于太阳自转一周,使地球有了太阳西升东落的年昼夜交替和四季分明的环境。“地球周年自转”是与太阳相对而言的,它和地球公转不同。把形式和性质不同的太阳回归运动与太阳周年运动归属到一类问题中,认为它们的奥运动都是地球公转,这是人们对地球基本运动形式的认识缺失。发现“地球周年自转”,在教育教学领域意义重大。  相似文献   

8.
发展新型DNA检测方法是后基因组时代的需求,诸如生物安全(生物恐怖袭击、SARS等高致病性传染病)以及健康(肝炎、HIV等)等领域都需要快速、便捷的DNA或RNA检测技术。电化学技术具有快速、灵敏、低能耗、易于微型化和集成化等优点,被认为是在时效、成本等有较高限定要求的场合实现DNA检测的首选技术之一。我们课题组在国家自然科学基金委、中国科学院和上海市科委等相关项目支持下研制出一种新型的电化学DNA纳米生物传感器———CDS(chronocoulometric DNA sensor)。该生物传感器具有高灵敏度和高特异性。CDS生物传感器有两个比…  相似文献   

9.
南极是地球最原始的海洋环境之朱利安·古特是南极科考队的首席科学家。南极科考是国际极地年研究计划的一部分。这位科学家表示,在南极发现的生物至少有30种似乎是科学上的首次发现。研究人员在南极海床的一块水域记录了大约1000种生物,这个地方比较温暖,科学家  相似文献   

10.
11.
正哥伦比亚大学大卫·基平教授发现,如果在另一颗星球上地球生命重新进化,成功概率仅是33%,对于高等智慧物种来说进化成功概率更低。他建立了一个复杂数学模型,其中包含了地球形成期已知生命时间表,这项研究发表在近期出版的《美国国家科学院院刊》上,表明如果地球生物进化史重新开启,像人类这样的高等智慧物种不能保证再次出现。基平说:"研究结果表明,高等智慧生命的进化形成并非必然,地球人类形成的概率为33%。统计实验表明,地球最早的原始生命形  相似文献   

12.
<正>不久前,科学家宣称,人类或许很快就能够利用电脑软件和3D打印机对细胞或整个生物体进行设计制造。这些细胞可用来制成生物燃料、对抗全球变暖,也可发展新的药物和健康护理方法等,甚至在地球上重建外星生命形式——如果人类能发现外星DNA的话。参与了人类基因组计划的克雷格·文特尔就曾在2010年宣布,成功制造出世界上第一个人造生命。他在《以光速前行的生命:从双螺旋到数字生命的黎明》中详细说明了这一理论。文特尔说:"在不久的将  相似文献   

13.
1 基因工程药物与疫苗 基因工程药物及疫苗是指利用DNA重组技术,将药用蛋白基因或表面抗原基因通过表达载体导入到受体菌或受体细胞中,并对工程菌或工程细胞进行培养、分离及纯化后获得的药物或疫苗.  相似文献   

14.
海峰 《科学大观园》2013,(15):34-36
借助多接收离子探针,研究人员近期对月球岩石样品和地球岩石样品中的氢/氘比进行了比对。他们得到的结论是:月球上的水并非来自彗星撞击,而是来自45亿年前地球,当时地球与另一个大型天体撞击,产生的大量溅射物逐渐冷凝形成了月球。这项新研究显示月幔中的水来自原始陨星撞击,一般认为这也是地球上大部分  相似文献   

15.
正美国佛罗里达理工学院韦斯特海默研究所的史蒂文·本纳教授不久前拿出新证据声称,几十亿年以前,火星远比地球更适于第一批细胞形成。这一证据使生物可能起源于火星并随陨石才来到地球的理论再次受到重视。地球生命化石记载告诉我们,地球上最早在大约35亿年前出现生命,但我们却对第一批细胞的形成过  相似文献   

16.
在太空中看到的地球是一个美丽的蔚蓝色星球,因为地球表面71%的面积覆盖着海水,海水孕育了这个星球上最原始的生命,然而对于海洋,我们知之甚少。人类从未停止过对未知海洋的探索,在征服海洋的同时,我们学会了与海洋和谐相处,学会了合理地利用开发海洋资源。  相似文献   

17.
哺乳动物卵泡中的颗粒细胞维持了卵母细胞处于减数分裂阻滞状态,这可以防止它们过早成熟。研究发现,位于卵泡壁上的颗粒细胞表达C-型钠肽(NPPC)的信使RNA;而卵母细胞周围的卵丘细胞表达NPPC受体NPR2的信使RNA,这是一个鸟苷酸环化酶。细胞培养实验显示,NPPC可增加卵丘细胞和卵母细胞中cGMP的表达水平,抑制了减数分裂的恢复。Nppc或Npr2突变小鼠,减数分裂阻滞将在大多数卵泡中不能持续,减数分裂得以提早恢复。卵母细胞源旁分泌因子可促使卵丘细胞表达Npr2的信使RNA。上述结果表明,颗粒细胞上的配体NPPC及其卵丘细胞上的受体NPR2协同防止了减数分裂的过早成熟,这对于成熟和排卵的协调以及对于雌性生殖都至关重要。  相似文献   

18.
<正>2016年10月20日,美国《细胞》杂志刊登一篇有趣的故事,美国劳伦斯伯克利国家实验室的科学家在研究蛇的进化过程中,突发奇想地用蛇的一段DNA将小鼠的同源DNA进行替换,结果小鼠的四肢明显变短,似乎像蛇一样不长腿了。原来,蛇的祖先是有四肢的,在进化过程中由于这段DNA功能发生变化,导致四肢慢慢消失了。  相似文献   

19.
孝文 《科学大观园》2013,(14):50-51
在西伯利亚北部岛屿,俄罗斯科学家首次发现保存完好的猛犸象血液(这还是第一次发现猛犸血液),让复活这种已灭绝的巨兽成为一种可能。目前,这具重量在1公吨左右的猛犸象样本已被送到萨哈共和国首府雅库茨克进行研究。萨哈也被称之为"雅库特",是俄罗斯联邦最大的行政区。据《西伯利亚时报》报道,韩国科学家黄禹锡的私人生物工程学实验室可以利用血液和其他组织样本提取DNA并进行古兽复活尝试。据悉,这个实验室一直在研究其他猛犸象DNA样本,试图让已经灭绝的西伯利亚猛犸象重回地球。  相似文献   

20.
正欧洲生物信息学研究所、维康桑格研究所等机构的研究人员及其合作者,开发了一种人工智能算法,利用计算机视觉分析癌症患者的组织样本。他们已经证明,该算法可以区分健康和癌症组织,还可以识别肿瘤中160多个DNA和数千个RNA变化的模式。相关论文近日刊登于《自然—癌症》,强调了人工智能在改善癌症诊断、预后和治疗方面的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号