首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
考虑到抗浮锚杆的工作机理与抗拔桩相似的特性,基于理想同心薄壁圆柱体剪切模型及抗浮锚杆剪应力分布简化模型,推导出GFRP抗浮锚杆的临界锚固长度的解析式,并以工程实例检验该方法的合理性。研究结果表明:本文提出的GFRP抗浮锚杆临界锚固长度解析计算方法是可行的,将理论临界锚固长度的2/3作为GFRP抗浮锚杆实际锚固长度参考值,可以在保证承载性能的前提下提高材料利用率。GFRP抗浮锚杆临界锚固长度理论值随锚杆杆体-岩土体弹性模量比值的增大而增大,但在该比例逐渐变大的过程中,临界锚固长度增长幅度逐渐降低。此外,增加杆体半径亦可提高理论临界锚固长度。研究结果可为GFRP抗浮锚杆的推广使用提供理论依据与实践参考。  相似文献   

2.
基于荷载传递法理论与Kelvin问题的位移解,进一步推导全长黏结GFRP(glass fiber reinforced plastics)抗浮锚杆在轴向拉拔荷载作用下轴力沿锚固深度的分布函数。为验证该理论应用于GFRP抗浮锚杆的合理性,借助植入式光纤光栅传感技术,对2根同型号GFRP抗浮锚杆进行现场拉拔破坏性试验。研究结果表明:根据荷载传递法与Kelvin位移解得到锚杆轴力与剪应力分布函数曲线形式与试验结果相近,说明该理论合理;孔口锚固体的开裂导致锚杆轴力及剪应力分布曲线试验值主要分布范围比理论值的更大;由于试验过程中岩土体位移较小,锚杆的剪应力分布曲线形式较理论值呈现"矮胖"的特点。此外,对锚杆轴力、剪应力理论分布函数曲线进行修正后的结果与试验结果吻合度显著提高。  相似文献   

3.
通过非线性有限元软件ABAQUS中的Cohesive黏结单元模拟锚杆杆体-灌浆体界面、灌浆体-周围岩体界面之间的接触,建立玻璃纤维增强聚合物(GFRP)抗浮锚杆杆体-基岩的轴对称数值计算模型,探究全长黏结GFRP抗浮锚杆的拉拔特征和变形规律。研究结果表明:本文建立的有限元模型能够较好地反映GFRP抗浮锚杆的荷载-位移关系、轴应力及剪应力沿锚固深度的分布规律。随着拉拔荷载的增加,灌浆体的应力逐渐增大并沿锚固深度向下传递,灌浆体应力的影响范围也逐渐扩大;周围岩体的应力持续增大,GFRP抗浮锚杆对周围岩体的横向作用范围也相应增大。锚筋弹性模量越小,轴应力与剪应力传递深度越浅;GFRP锚杆轴应力的衰减速率比钢筋抗浮锚杆的衰减速率快。随着GFRP抗浮锚杆的锚固长度的增加,轴应力衰减速率加快,轴应力传递深度减小,剪应力峰值点与地表的距离增大,剪应力峰值和传递深度变小。  相似文献   

4.
通过自行设计的室内大型构件对拉试验,测定外锚固段变形量(滑移量)及外锚固极限承载力,分析玻璃纤维增强聚合物(GFRP)抗浮锚杆的外锚固性能。研究结果表明:GFRP抗浮锚杆外锚固的破坏形式有2种,一种是锚杆材料强度不足产生劈裂破坏,另一种是GFRP锚杆和混凝土界面相对滑移较大,产生拔出破坏。直径为28 mm的GFRP抗浮锚杆,在标号为C25的商品混凝土的条件下,外锚固长度为840 mm的极限承载力为356 k N,最大滑移量为7.66 mm;外锚固长度为420 mm的极限承载力为215 k N,最大滑移量为4.24 mm;GFRP抗浮锚杆与混凝土之间平均黏结强度随着滑移量的增大而提高,随着外锚固长度的增加而降低;GFRP抗浮锚杆与混凝土之间的平均黏结强度的增加速率随滑移量的增大而减小。研究结果为GFRP抗浮锚杆的工程应用提供理论依据。  相似文献   

5.
GFRP(玻璃纤维增强聚合物)抗浮锚杆因其布置灵活、分散应力、耐腐蚀性强、绿色环保等优点,成为钢筋抗浮锚杆的良好替代品。为进一步研究GFRP抗浮锚杆的承载性能,本文基于青岛某基坑抗浮工程中的6根GFRP筋和钢筋锚杆开展现场拉拔破坏性试验。试验结果表明:钢筋锚杆与GFRP锚杆平均破坏荷载分别为324 kN、394 kN,锚固强度利用率均达到92%。在相同直径、相同锚固长度条件下,GFRP锚杆能够承受更大的拉拔力,且发挥了更大的黏结强度。在荷载-相对滑移曲线分析中,GFRP抗浮锚杆整体呈缓“S”型,钢筋锚杆整体呈“L”型,表明GFRP锚杆抗浮性能优于钢筋锚杆。根据二次多项式回归分析,当锚杆杆体位移量小于20 mm时,预测精度较高,最高可达96.15%。研究结果对实际抗浮工程应用具有一定的借鉴和参考价值。  相似文献   

6.
为了解决玻璃纤维增强聚合物(GFRP)抗浮锚杆外锚固问题,提出一种新型的锚固系统—螺母托盘锚具。通过自行设计的2组大型构件对拉试验,测定外锚固段变形(滑移)及外锚固极限承载力,研究GFRP抗浮锚杆螺母托盘锚具外锚固承载性能。研究结果表明:增设螺母托盘的GFRP抗浮锚杆结构的破坏形式为锚杆拔出破坏;直径d为28 mm的GFRP抗浮锚杆,在标号为C25的混凝土条件下,外锚固长度为30d的极限承载力为384 k N,最大滑移为8.98 mm,外锚固段广义效率系数为0.890,广义平均黏结强度为5.20 MPa;外锚固长度为15d的极限承载力为267 k N,最大滑移为5.13 mm,外锚固段广义效率系数为0.619,广义平均黏结强度为7.24 MPa。GFRP抗浮锚杆与混凝土之间的广义平均黏结强度随着外锚固长度的增加而降低;在每级对拉荷载作用下,GFRP抗浮锚杆与混凝土广义平均黏结强度随试件两端的滑移增加而降低,随着滑移增加,广义平均黏结强度的增大速率变小。  相似文献   

7.
采用倒置锚杆-基础底板体系,通过现场拉拔破坏性试验,研究GFPR筋和钢筋两种材质抗浮锚杆与基础底板的黏结锚固性能.试验结果表明:GFRP筋和钢筋抗浮锚杆均产生两种破坏形态-滑移破坏与拔断破坏;弯曲处理对两种材质锚杆极限承载力影响效果相反,钢筋锚杆极限承载力随拉拔荷载增大而增大,GFRP锚杆极限承载力随拉拔荷载增大而减小;钢筋抗浮锚杆的Q-S曲线为双折线型,存在明显的拐点,产生拐点的原因是拉拔荷载达到材料屈服强度,而GFRP锚杆无明显屈服阶段,故其Q-S曲线近似线性分布;在分析比较3种描述锚杆Q-S曲线的数学模型的基础上,发现指-幂函数模型能较好地拟合两种不同材质抗浮锚杆的Q-S曲线,能够精准预测GFRP筋及钢筋抗浮锚杆与基础底板的极限抗拔力和滑移变形.研究成果将为GFRP筋在抗浮工程中推广应用奠定基础.  相似文献   

8.
基于ABAQUS非线性有限元软件,在考虑多界面接触的情况下建立基础底板-GFRP抗浮锚杆体系的一体化轴对称计算模型,分析浮力作用下GFRP抗浮锚杆体系的变形性能和受力特征。研究结果表明:抗浮体系的竖向位移和锚筋的应力分布规律与试验结果较吻合,抗浮体系的竖向位移以内锚固变形为主。不考虑基础底板与地层的黏结作用时,GFRP抗浮锚杆体系中内、外锚固段锚筋的轴应力和剪应力的分布规律与各自独立的分布规律一致。锚筋在基础底板与地层界面出现轴应力峰值,随地下水浮力的增加,轴应力分布范围逐渐增大,轴应力峰值也相应增大,轴应力在基础底板中的衰减速率要比在地层中的快。锚筋的剪应力在抗浮体系中出现2个峰值点,且锚筋在基础底板中的剪应力峰值为地层中剪应力峰值的4.2~5.0倍;随着地下水浮力的增大,锚筋剪应力的分布范围逐渐变大,内、外锚固段剪应力峰值也相应增大。  相似文献   

9.
抗浮锚杆具有地层适应能力强、锚固力高、造价低、工期短等优点,具有广阔的工程应用前景.开展了4组13根岩石抗浮锚杆的极限抗拔承载试验,在1根试验锚杆上安装光纤光栅应变传感器进行应力测试,所有试验锚杆均加载至极限破坏状态,从荷载-锚固体顶面位移曲线、锚筋轴力分布、锚筋剪应力分布规律及界面黏结强度等方面进行了分析.结果表明,抗浮锚杆主要出现锚筋-锚固体界面剪切滑移破坏、锚固体-周围岩体界面剪切滑移破坏及锚筋拔断3种破坏形态.试验条件下,黏结长度为2.0 m的抗浮锚杆其极限抗拔承载力为240 kN,黏结长度不小于3.0 m的抗浮锚杆其极限抗拔承载力不低于320 kN,承载力高、变形小,能够满足抗浮要求.锚筋轴力自上而下逐渐衰减,锚筋在距锚固体顶面3.0 m以下范围内不受力,建议中风化花岗岩中抗浮锚杆的黏结长度设计值取3.5~4.0 m.锚筋剪应力沿深度呈先增大后减小的趋势,在距锚固体顶面0.45 m的位置达到峰值,约为2.7 MPa.锚筋-锚固体界面平均黏结强度为1.14~1.36 MPa,锚固体-岩土体界面平均黏结强度为0.28~0.37 MPa.  相似文献   

10.
研究了粘结式GFRP锚杆的荷载传递机理与岩石边坡加固机理,提出了GFRP锚杆设计的原则、设计主要内容与流程、结构设计基本方法,并将之应用于工程实践.研究结果表明:GFRP锚杆的荷载传递取决于GFRP筋与砂浆之间的粘结性能,GFRP锚杆黏结力主要由化学胶结力、握裹力、机械交合力与机械锚固力组成,光圆锚杆与变形锚杆的粘结性能存在较大的差异;锚杆通过悬吊锚固、改变岩体应力状态、组合梁作用、阻滑抗剪等作用加固岩石边坡;由于GFRP锚杆对横向荷载有较强的敏感性,应加强对端部锚具的设计,建议采用钢套粘结式和楔形粘结式锚具.  相似文献   

11.
针对锚杆端部的拉拔荷载由锚固段的锚固体和自由段的锚固体共同承受的特点,采用反映土锚界面抗剪强度衰减的双折线模型,基于荷载传递理论推导得到锚杆抗拔力与位移之间的解析关系式,工程实例计算结果验证了理论推导的正确性.计算结果表明:自由段受荷后对锚杆的刚度和承载力都有明显的提高,且随着自由段长度的增加,其承载力会有所提高,但锚杆整体刚度却在降低,因此在预应力锚杆的设计与施工中应合理地选择自由段长度.  相似文献   

12.
采用室内模型试验与现场试验相结合的方法,研究水硬石灰拌合粉煤灰浆液的木锚杆锚固性能:锚固系统的失效模式、杆体-浆体界面应变与荷载时程关系及传递关系.通过对拉拔力的检测,室内模型可以提供21~30 kN的极限锚固力,现场锚固系统可以提供6.94~16.00 kN的极限锚固力.通过对杆体-浆体界面应变监测,锚固系统表现出低弹性、高塑性的特征.在荷载进程中,杆体-浆体界面的应力分布与传递特征具有单峰值分布、高值出现在锚固末端、压应力出现等特点,呈现出拉力型和压力型全长黏结锚固系统的特点.研究结果为更合理地夯土遗址锚固设计提供科学基础.  相似文献   

13.
针对土层锚杆在拉拔荷载作用下的轴向变形问题,考虑锚杆周边土体变形与锚-土界面剪切的耦合作用,建立了表征锚杆锚固体荷载传递机理的有限差分物理模型。通过数值编程求解该模型,获得了不同拉拔荷载水平下的锚杆轴向变形和土体剪切变形的解答,从而明确了锚固体在拉拔过程中荷载变形曲线和沿杆体长度方向的轴力分布规律。方法与荷载传递方法和剪切位移法等对某实际工程中灌浆锚杆案例进行分析,将各方法所获解答与实测数据进行了对比分析。结果表明:考虑土体变形与界面剪切耦合的模型可以获得与实测数据更为吻合的荷载位移曲线和轴力分布,验证了该模型的优越性和准确性。  相似文献   

14.
随着我国城市建设的高速发展,传统的抗浮锚杆锚固效果差、易发生群锚效应的问题更加凸显,其抗浮锚固效果并不能达到实际工程的要求,而扩大头抗浮锚杆是深基坑支护相对有效的方式。以中国科学院科研楼基坑中的扩大头锚杆为研究对象,研究深基坑工程中扩大头抗浮锚杆的抗拔承载力,采用Midas GTS有限元软件对扩大头抗浮锚杆的受力特征和变形特性进行分析。研究结果表明:当有荷载作用时,扩大头锚杆的轴力随着锚固深度的增加逐渐减小,扩大头锚杆在变截面处的轴力变化显著且存在拐点;相较于普通抗浮锚杆,扩大头锚杆的抗拔承载力约为普通锚杆的2.4倍;通过理论计算得到扩大头锚杆的极限承载力大致为1 200 kN,理论计算有一定的保守性,实际的极限承载力值应大于计算值;研究结果为今后扩大头锚杆受力分析提供了参考,确保了工程后期的安全性。  相似文献   

15.
以地下洞室全长粘结式锚杆为研究对象,分析了锚杆与围岩荷载传递机制,导出了相应的荷载传递基本微分方程.结合围岩自由变形,采用有限差分法求解方程,进而得到锚固体轴力和界面剪应力沿杆长分布.采用二折线剪切滑移模型描述锚固体界面力学特性,考虑锚固体滑移,将界面的超余剪应力转化为模型节点荷载,通过不断更新围岩位移以修正锚固体内力.基于此锚杆算法,模拟了拉拔试验,结果表明该方法合理、可行.通过对某引水隧洞特征锚杆的受力分析,计算了围岩弹模、界面剪切刚度、砂浆厚度、锚杆直径和锚杆长度对锚固体受力的影响,计算结果可为地下洞室锚杆布置优化提供理论依据.  相似文献   

16.
针对全长注浆锚杆在深部隧洞中支护作用的局限性,为有效控制隧洞围岩变形、增强锚杆承载性能,本文采用有限元数值模拟法深入研究拉压复合型锚杆支护结构在岩石隧道加固过程中受到拉拔荷载作用下的界面失效特征及力学传递机制,并将锚杆应用在超载模型试验中,探究锚杆的支护性能。研究结果表明:锚固体与围岩相互作用接触界面的力学演化共经历了弹性阶段、塑性软化阶段、完全滑移阶段的渐进式失效过程。界面剪切力的传递也是从拉拔荷载较小时出现在承载板处,随拉拔荷载增大,向锚固段两侧转移,呈现双峰趋势。根据锚杆界面剪切力分布规律,提出了复合锚杆在低荷载和高荷载拉拔作用下的剪切力分布模型,此模型具有普遍性,进行的室内超载模型试验得出复合锚杆支护效果优于普通锚杆的结论,此研究可为复合锚杆在深埋隧洞等地下工程中的应用提供一定的参考价值。  相似文献   

17.
玻璃纤维增强聚合物(GFRP)材料因其抗拉强度高、质量轻、耐腐蚀、抗电磁干扰、易切割等优点,受到越来越多的重视,但弯折后的力学性能有待研究。本文基于6根GFRP抗浮锚杆和6根钢筋抗浮锚杆的现场足尺拉拔破坏性试验,研究了不同形式GFRP抗浮锚杆在混凝土底板中的受力特性与变形规律。试验结果表明:弯曲处理对提高GFRP抗浮锚杆极限承载力不利,且随着弯折长度的增加,极限承载力降低程度增大,但弯曲处理可以有效限制抗浮锚杆在底板中的位移,且弯折长度越长,位移限制效果越明显。此外,通过引入抗浮锚杆弯曲处理影响系数就弯曲处理对于GFRP抗浮锚杆承载力与滑移量影响进行讨论,并提出了需进一步研究的问题。  相似文献   

18.
考虑地基土体力学性质随深度变化特性,假定土体剪切模量、弹性极限抗剪强度以及抗剪强度残余系数均随深度按指数函数增大,锚固界面采用一次跌落软化模型,基于剪切位移法推导锚固段周边土体处于弹、塑性阶段时锚杆位移、轴力、剪应力解析式,并以工程实例检验该方法及基本假设的合理性。最后,基于该方法分析锚固段周边土体剪切模量、弹性极限抗剪强度、抗剪强度残余系数随深度分布参数以及锚固段弹性模量对锚杆受力变形特性的影响。研究结果表明:土体力学性质随深度增加呈指数函数增大有利于改善锚杆工作性状,在计算中给予合理考虑,可更加真实地反映锚杆荷载传递过程。  相似文献   

19.
通过现场试验以及ABAQUS数值模拟相结合的方法,探讨了风化岩地基中全长黏结钢筋抗浮锚杆的承载性能和荷载传递特征。结果表明:风化岩地基中的抗浮锚杆承载力高,上拔量小,能够满足工程需求。锚杆杆体荷载-位移曲线、剪应力、轴应力分布规律的模拟结果与现场试验结果具有较高的吻合度,说明用ABAQUS软件模拟钢筋抗浮锚杆的承载特性是可行的,具有较强的适用性;同时,还得到了现场试验较难得到的锚固砂浆和周围岩土体的应力分布规律,明确了钢筋抗浮锚杆受荷后的影响范围和锚固体的力学特性,弥补了现场试验的不足。  相似文献   

20.
可回收式锚杆拉拔试验的数值模拟与影响因素分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为了分析影响可回收式锚杆抗拔力的因素,在对可回收式锚杆现场拉拔试验研究的基础上,建立可回收式锚杆三维有限元模型.通过数值模拟分析,探讨可回收式锚杆的受力机理和破坏形式,得到可回收式锚杆的锚固体与周围土体之间的界面剪应力分布和传递规律.分析表明,可回收式锚杆的破坏主要是由于锚固体与周围土体之间的界面剪应力大于界面粘结力而引起的,而且界面剪应力分布不仅与外荷载、锚固长度和锚固体半径有关,锚固体也存在着临界长度和临界半径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号