首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
桩顶竖向荷载作用下桩土响应的数值分析   总被引:1,自引:0,他引:1  
为了研究桩土之间的相互作用机理,利用数值方法建立桩土计算模型,分析桩顶荷载作用下桩侧摩阻力分布、桩体轴力分布、中性点位置的变化规律以及桩周土体的位移.研究结果表明:桩侧负摩阻力沿桩身先增大后减小,并逐渐过渡到正摩阻力;随着桩顶荷载的增大,桩侧负摩阻力逐渐减小,中性点位置上移;桩体轴力沿桩身呈现先增大后减小的趋势;受到桩侧摩阻力的作用,位于地表的桩周土体沉降受到一定影响,其影响范围随桩顶荷载的增大而减小.  相似文献   

2.
为探讨不同桩径、不同桩长的旋挖成孔嵌岩灌注桩在不同荷载水平下的荷载传递规律,基于印尼某燃煤电站桩基工程,在6根嵌岩桩桩身安装钢筋应力计进行单桩竖向抗压静载试验。试验结果表明:6根试桩的荷载—位移(Q-s)曲线均为缓变型,没有明显的陡降段,桩顶沉降与桩顶荷载呈非线性关系,回弹率介于37.6%~70.9%之间,残余沉降较小,承载力较高,均满足设计要求;桩身轴力随深度逐渐衰减;随桩顶荷载增加,桩侧摩阻力发挥表现出异步性,最大荷载作用下嵌岩段侧摩阻力达到峰值,6根试桩在嵌岩段的最大侧摩阻力介于136.2~166.4 kPa之间;桩端阻力随荷载水平的增加逐渐增大,在最大荷载作用下,桩径为800 mm的试桩长径比介于19.38~20.13,其桩端阻力分担荷载介于54.8%~55.2%,表现出摩擦端承桩的特性;桩径为600 mm的试桩长径比介于42.17~44.67,其桩端阻力分担的荷载介于30.9%~32.6%,侧摩阻力发挥主要作用,表现出端承摩擦桩特性。试验结果对印尼地区嵌岩灌注桩的应用具有重要意义。  相似文献   

3.
桩侧负摩阻力是影响桩基工作性能的重要因素,而堆载和桩顶荷载对桩侧摩阻力的分布影响很大,为了研究其组合作用机理,采用拉格朗日差分法分析堆载和桩顶荷载组合作用下桩侧摩阻力分布、中性点位置变化规律以及桩体轴力分布。研究结果表明:负摩阻力主要出现在0.37~0.64倍桩长位置;当堆载小于或等于60 k Pa时,负摩阻力沿桩身向下先增大后减小并逐渐过渡到正摩阻力;当堆载大于60 k Pa时,负摩阻力沿桩身向下逐渐减小然后过渡到正摩阻力;桩体最大轴应力与堆载和桩顶荷载具有明显的二元线性相关性;中性点位置变化规律受桩顶荷载和堆载组合值的影响,根据此规律得出二元方程式,可用于快速估算中性点的位置。  相似文献   

4.
城市车辆段上盖开发工程中的大跨度桩基具有单桩竖向承载较大、桩间大跨度范围内土体受荷较小的特点。以西安地铁某车辆段大跨度桩基为研究对象,制备人工湿陷性黄土作为相似材料,开展了湿陷性黄土地层大跨度桩基的室内模型试验,研究大跨度桩基在湿陷性黄土地层中的荷载传递机制与变形规律。结果表明:制备的人工湿陷性黄土与现场原状黄土性质接近,将其应用于模型试验时可以得到良好的效果;大跨度桩基在未浸水时,荷载沉降曲线为陡降型,桩身轴力在桩顶附近显著下降,未达到极限承载力时,桩顶沉降、桩端阻力线性增大;在黄土浸水湿陷后,桩身轴力沿埋深方向呈“D”字型分布,随着浸水时间的增加,桩顶沉降、桩端阻力先缓慢增加后显著增加,中性点位置不断向桩身下部移动。  相似文献   

5.
采用数值分析方法,考虑桩-土-褥垫层的共同作用,对复合地基在地基土沉降前后的沉降、桩侧摩阻力和桩身轴向应力等工作性状进行了研究.结果表明:与常规条件下相比,在相同上部荷载作用下,地下水位下降使基础和桩顶的沉降增加,桩身轴向应力增大,桩-土应力比提高,上部荷载的增大会加剧这些现象.随着降水造成的地基土沉降增加,加固桩体中负摩阻力的影响逐渐增大,中性点位置下移,负摩阻力引起的下拉力增大,桩侧摩阻力发挥更加充分.  相似文献   

6.
负摩阻力作用下的单桩竖向承载性状   总被引:1,自引:0,他引:1  
对负摩阻力作用下的单桩承载性状、负摩阻力与工作荷载之间的关系进行理论分析,然后建立单桩有限元模型,研究负摩阻力作用下桩基的承载性能、桩基的刚度以及下曳沉降变化规律.研究结果表明:下曳沉降由2部分组成,一是桩顶没有荷载作用时纯粹由负摩阻力引起的桩顶沉降;二是负摩阻力作用下,桩顶荷载下移中性点位置,使得承受桩顶荷载的桩段缩短所引起的沉降.负摩阻力在中性点平面形成的一对平衡力相当于在单桩桩体上施加了预应力,提高桩体本身的轴向刚度.  相似文献   

7.
通过对普通砂中桩竖向静载的模型试验,分析了在相同桩顶静载作用下桩的沉降稳定后,当地下水位下降时,端承桩与摩擦桩桩侧负摩阻力的变化规律。实验结果表明,在地下水位下降时,端承桩与摩擦桩桩侧负摩阻力的变化具有明显的差异。随着地下水位的下降,端承桩最先出现负摩阻力,负摩阻力引起的下拽力也随地下水位的下降而增大,中性点位置较低,桩顶沉降较小;摩擦桩而后出现负摩阻力,负摩阻力引起的下拽力随地下水位下降而减少,中性点的位置也随着地下水位的下降而上升,桩顶沉降较大。这对桩基负摩阻力性状的研究具有较大的意义。  相似文献   

8.
为了更进一步研究黏性土地基上静压桩贯入及承载特性,通过在桩身安装光纤光栅(FBG)以及在桩顶安装温度自补偿传感器,对双壁开口模型管桩的沉桩和单桩承载特性进行研究。结果表明:压桩力、桩端阻力、桩侧摩阻力随着贯入深度的增加而增大,且桩端阻力为沉桩过程的主要阻力,沉桩结束时占比为66.7%。相比于外管,内管桩侧摩阻力和桩身轴力均较小。荷载-位移曲线为陡降型,最大沉降为47.72 mm,极限荷载为6.3 kN,是沉桩终压力的2.48倍。试桩内管桩身轴力在土塞高度范围内以及外管桩身轴力在桩长范围内随着桩身埋深逐渐减小。内管桩侧摩阻力仅在土塞高度的范围内随着深度逐渐增加;外管桩侧摩阻力在荷载小于7.0 kN时,随着深度呈先增大后减小的趋势,当桩顶荷载达到7.0 kN时,随着深度逐渐增大。在各级荷载作用下桩端阻力占桩顶荷载的比例为53.6%~65.1%,表现出了较好的端承桩性状。研究结果对双壁开口管桩内外管贯入及承载特性的研究具有重要的意义。  相似文献   

9.
以具体工程为案例,采用有限元计算软件MIDAS/GTS进行数值模拟,对比工程监测数据,遵循单一变量原则,研究桩端土层弹性模量、桩顶竖向荷载及回填土厚度变化对单桩受力变形的影响.研究表明:改变桩端土层弹性模量,由8 MPa增大至300 MPa时,深厚回填土中单桩负摩阻力增幅达117%,最大轴力增加87%,中性点位置不断下降,桩顶沉降值减小;随着桩顶竖向荷载逐渐增大,荷载值对深厚回填土中单桩负摩阻力影响程度逐渐减小,中性点深度比越来越小,此时桩顶竖向荷载、负摩阻力与中性点三者的变化处于一种动态平衡的过程之中;当回填土的厚度由5 m逐渐增加至25.5 m的过程中,单桩负摩阻力及轴力增大,且中性点深度比呈增大趋势.  相似文献   

10.
以广东某石油仓储工程为依托,通过8 MN·m能级强夯处理陆域回填区和海域回填区,对陆域试夯区和海域试夯区分别进行3根超长冲孔灌注桩单桩竖向抗压大吨位载荷试验及桩身力学测试。根据超长冲孔灌注桩实测数据探讨超长灌注桩的荷载传递机理和竖向承载特性。研究结果表明:试桩荷载-沉降(Q-s)曲线为缓变型,桩顶残余沉降量均在49%以上,桩顶回弹率介于20.4%~50.6%之间;极限荷载作用下,6根试桩表现出摩擦桩或端承摩擦桩的特性,桩端承载力只占总荷载很小一部分,陆域3根试桩为6%~34%,海域3根试桩为16%~35%;桩侧摩阻力和桩端阻力的发挥具有异步性,荷载主要由桩侧摩阻力承担。经过强夯处理浅层地基,桩侧摩阻力峰值发生在桩体中上部或浅部土层,即距桩顶(0.14~0.47)倍桩长的位置;部分土层的极限侧摩阻力较现行规范提供的设计侧阻力偏大;海域试桩比陆域试桩桩端阻力发挥更充分。  相似文献   

11.
利用室内实验探究单桩在顶载2 kN、边载分别为4.67、9.34、14.01和18.68 kPa作用下单桩的性能,与ABAQUS模拟对比分析.在ABAQUS分析时以摩尔-库伦为土体本构,利用ODB文件导入法实现地应力平衡,得出桩身轴力、桩侧负摩擦力、桩正负摩擦力分界点发展轨迹.结果表明:边坡荷载的增加,桩身的轴力最大值会对应地增大13.26%、19.38%、27.04%和39.79%,单桩下拉荷载有增大的趋势.负摩阻力中性点深度从0.31增至0.35 m,中性点位置有逐渐下移的趋势.  相似文献   

12.
针对由于受吹填土高压缩、低渗透等不良特性的影响,吹填场地的桩基础受力具有明显特异性,致使桩周土体对桩产生负摩阻力的问题,采用双层地基一维固结模型计算吹填土及下卧土层的固结变形,采用双折线函数模拟桩土间相互作用.在此基础上,建立桩土荷载传递模型,并得到中性点位置及不同打桩时间下轴力、桩侧摩阻力随深度及时间变化的解析解.将解析解计算结果与工程实测数据进行对比,中性点、摩阻力及轴力等的分析结果表明该解析解在实际工程中的应用是可行的.最后基于该解析解分析了各影响因素对桩侧摩阻力、轴力及中性点位置的影响,并与JGJ 94—2008《建筑基桩技术规范》计算的中性点位置和下拉荷载对比,表明JGJ 94—2008计算方法未考虑桩顶荷载及打桩前桩周土体固结的影响,过高地估算了桩基负摩阻力的影响.  相似文献   

13.
深厚软土地区长钻孔灌注桩后注浆试验研究   总被引:3,自引:0,他引:3  
对深厚软土地区长钻孔灌注桩的后注浆试验结果进行研究,获得各级荷载作用下桩身轴力和桩侧摩阻力随桩身深度的变化规律、桩项荷载一位移一时间曲线.研究结果表明:当注浆量不超过3t且注浆压力为1~3 MPa时,桩侧摩阻力占总荷载的93%左右,桩端轴力只占桩项荷载的5%左右;当桩顶荷载为4.6 MN时,桩侧注浆可减小桩项位移23%左右,桩端注浆可减小桩项位移32%左右;桩侧和桩端后注浆技术是减小桩基工后沉降的有效方法之一.  相似文献   

14.
挤扩支盘桩承载性状与沉降特征的试验   总被引:4,自引:1,他引:3  
通过对支盘桩的静载荷试验和对桩身轴力的测试,分析了桩在竖向荷载作用下的荷载传递机理和沉降特性,测试了桩身侧摩阻力和承力盘的端承力分担荷载的比例.指出工作荷载下支盘分担的荷载比例高于60%;桩侧摩阻力充分发挥时桩顶的沉降约为0.6%d;支盘间距3.57d没有明显影响承载力的发挥.  相似文献   

15.
通过现场试验,测出了CFG桩不同深度处的桩身轴力和侧摩阻力,并得到了桩土应力比。分析了CFG桩复合地基中桩身轴力、桩侧摩阻力的分布及发展过程。研究了加载过程中桩侧摩阻力和端阻力荷载分担以及荷载分担比随外荷载的变化规律。最后介绍了CFG桩复合地基中负摩擦阻力的作用,得出了CFG桩由于褥垫层的设置,在加载初期,桩身存在负摩擦力,同时协调了桩土变形,使得桩土共同承担荷载,充分发挥土体的承载能力。  相似文献   

16.
以青岛某重点工程为依托,对6根冲孔嵌岩灌注桩进行大吨位竖向静载荷试验与桩身内力测试(其中3根试桩加载至极限状态),探讨深厚回填土中(厚度为10 m)嵌岩灌注桩的荷载传递机理与竖向承载特性,分析强夯预处理技术对深厚回填土承载力的影响,总结现存嵌岩段极限侧摩阻力估算方法并评估其在本场地条件下的适用性。研究结果表明:6根试桩荷载-沉降曲线均为缓慢型,沉降与桩顶荷载呈非线性关系;桩顶沉降介于23~60 mm,且卸载回弹率较大,多数超过50%,嵌岩灌注桩的弹性工作性状较明显;在极限荷载状态下,桩端分担的桩顶荷载高达50%,嵌岩段侧摩阻力高达750 k Pa。强夯后回填土层的桩侧摩阻力由30 k Pa上升至120 k Pa,桩顶沉降平均值约为21 mm,约为未强夯处理回填土层中基桩沉降的50%;与采用Hoek-Brown破坏准则的理论估算法相比,基于岩石单轴抗压强度(UCS)的经验法较简单且能提供较为合理的估算值,且当折减系数取0.200~0.225时,误差率小于10%。  相似文献   

17.
钻孔灌注桩荷载传递机理试验研究   总被引:2,自引:2,他引:2  
通过桩基静载试验实测数据,分析了桩身轴力的荷载传递机理.结果表明:桩顶荷载主要通过桩侧摩阻力逐渐向下传递,具有明显的摩擦桩特点,桩侧摩阻力所占比重较大,而桩端阻力所占比重较小;桩底沉渣厚度显著影响桩顶沉降量与极限承载力.  相似文献   

18.
可控刚度桩基础应用于端承型桩基的桩土共同作用时,桩侧产生负摩阻力,如考虑不周会产生一定的安全隐患。基于荷载传递法,依据桩周土体沉降实际分布情况,提出桩长1/3和1/2位置的桩周土体沉降二折线分析模型,得到任意桩身位置处桩身轴力和桩土相对变形解答。分析结果表明:随着长径比、沉降比以及桩侧摩阻力传递系数k的增加,桩身轴力增长率也随之增加;随着荷载比的增加,桩身轴力增长率减小;桩身轴力增长率一般不大于10%,在工程设计时应予以考虑。  相似文献   

19.
厚填土区成桩质量对竖向荷载传递性状的影响   总被引:1,自引:1,他引:0  
结合广西钦州港大型炼油项目装置区桩基试验工程,开展砂岩厚填土区单桩竖向静载试验及桩身内力试验研究,通过对2根冲孔灌注桩的孔径曲线、Q-s曲线及桩身内力分布曲线的研究,探讨了桩径变化对于砂岩厚填土区嵌砂岩短桩的承载力性状及荷载传递规律的影响.结果表明,对于砂岩厚填土区后压浆嵌岩桩,其变形特征为缓变型,其极限承载力的确定以位移控制,桩身轴力与桩径的变化密切相关,孔径随深度呈逐渐增大的"正八字形"的孔径变化不利于桩侧摩阻力的发挥,而"倒八字形"的孔径变化则有利于桩身荷载向桩周土中传递,60%以上的桩顶荷载由桩侧摩阻力承担,最后对2根试桩的桩侧摩阻力发挥程度进行了差异性分析.研究对类似地区桩基设计与施工具有参考价值.  相似文献   

20.
基于剪切位移法的基桩负摩阻力计算   总被引:1,自引:0,他引:1  
在对现有2种常用基桩负摩阻力计算方法进行分析的基础上,探讨了影响桩土间实际负摩阻力的主要因素.进而根据有效应力原理,建立出能充分考虑桩土剪切位移对摩阻力发挥程度影响的基桩负摩阻力计算分段曲线模型,并由此推导出基于荷载传递法的负摩阻力计算基本微分方程,并给出了在不同桩土相对位移条件下基桩负摩阻力计算的分段解析式.在此基础上,引进土体在均布压力作用下沉降的弹性解,从而得到了桩身轴向力、中性点的位置及基桩负摩阻力计算的改进方法.理论与工程实例试验结果对比分析表明,采用该方法所得的桩身轴力随深度的变化曲线与实测曲线吻合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号