首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用金相和能谱方法对Ti、Al箔的固相扩散反应行为进行了研究,建立了TiAl3相层厚度生长的计算公式.并在此基础上,探讨了球磨Ti/Al复合粉的两步固相烧结工艺.研究表明:两步固相烧结法可有效抑制烧结引起的粉末体变形,获得具有典型显微组织的致密烧结材料;尽管延长低温预烧时间可获得由TiAl与Ti3Al组成的热稳定性较好的组织,但组织致密度偏低,为了获得高致密的TiAl合金,仍需后续高温烧结.实验还表明,高能球磨促进了TiAl基合金组织细化,且球磨时间越长烧结组织晶粒越细小;双态组织中的层片组织含量随球磨时间延长而增加,但长时间球磨由于非晶化的出现又会引起层片组织含量下降.  相似文献   

2.
采用高能球磨结合热压烧结的方法制备了W-1wt%TiC纳米复合材料,并对其组织结构、室温力学性能进行了研究.结果表明,高能球磨能显著细化粉体、减小晶粒尺寸及增加晶格畸变,促进复合粉体的烧结致密化.烧结后,纳米TiC颗粒均匀地分散W基体中,TiC的颗粒尺寸约100nm,呈单分散状态,TiC颗粒与W基体结合紧密,界面上没有析出物出现.纳米TiC颗粒的加入起到细晶强化和晶界强化的作用,提高了复合材料的力学性能.W-1wt%TiC纳米复合材料的致密度、维氏显微硬度、弹性模量、抗弯强度分别由纯W材料的95.6%,3.32GPa,345GPa,730MPa提高到98.4%,4.33GPa,396GPa,1065MPa.  相似文献   

3.
Al-Si合金粉末的高能球磨及其表征   总被引:2,自引:0,他引:2  
为制备能满足使用要求的高硅铝合金电子封装材料,采用高能球磨对Al-Si 合金粉末进行氧化预处理,结合包套热挤压制备Al2O3 与SiO2 增强的弥散强化型铝硅复合材料,并利用粉末粒度分析仪、氧分析仪、金相显微镜及扫描电镜对球磨粉末氧含量、粉末粒度及材料组织进行分析.研究结果表明Al-Si 合金粉末经24 h球磨后,粉末粒度明显减小,部分粒径从3~5 μm 减小到0.1~0.2 μm;球磨后粉末形状从原来的长条状转变为细小的球状;粉末氧含量随着球磨时间延长而增加,且与球磨时间接近于呈线性关系;粉末经高能球磨后,所制备材料晶粒更加细小,特别是硅粒子已明显细化,材料组织更均匀、更致密;随着粉末球磨时间延长,材料热导率增加,球磨32 h 后,材料热导率高达145.5 W·m-1·K-1.  相似文献   

4.
以12Cr--0.5Ti--1W的气雾化粉和纳米Y2O3粉末为原料,通过对预合金粉末的机械合金化和热等静压烧结成型的方法制备了12Cr--ODS铁素体钢,然后运用锻造和热处理等方法实现对材料力学性能的提高.在透射电子显微镜下观察到组织中弥散分布的纳米氧化物颗粒,能谱分析确定氧化物弥散颗粒为Y--Ti--O的复杂氧化物.利用抗拉强度测试和超声无损检测等方法对12Cr--ODS铁素体钢的力学性能进行了分析.  相似文献   

5.
采用粉末机械合金化-温压成型-真空烧结等方法制备了氧化物弥散强化铁基高温合金MA956,并对其制备工艺和组织性能进行了研究。结果表明,高能振动球磨4h粉末颗粒细小均匀,已经基本实现了合金化,将其在120℃、500MPa条件下进行温压成型,压坯密度比常温模压工艺提高了0.3g/cm3;烧结温度对烧结体组织和性能有较大的影响,粉末压坯在1350℃烧结其致密度最高,为90.8%,且显微组织致密性好。  相似文献   

6.
采用高能球磨(HEM)和放电等离子烧结(SPS)工艺制备了纳米颗粒增强超细晶Al2024-TiN(2%TiN)复合材料,研究了球磨时间对球磨后复合粉末形貌和组织以及对烧结后复合材料组织和性能的影响.结果表明:粉末形貌随着球磨时间而发生变化,当球磨时间大于30 h时,铝粉末的形貌和粒径不再发生明显变化,晶粒尺寸也稳定在36nm左右,但粉末堆积密度随球磨时间延长而增加;随着球磨时间增加,烧结样的相对致密度逐渐上升,其屈服和抗压强度先上升后下降,球磨40 h的烧结样的强度最高,屈服和抗压强度分别为734.2 MPa和871.6 MPa,仍保有10%的工程应变;具有相同晶粒尺寸的球磨40 h和50 h的粉末在烧结过程中发生了不同程度的晶粒长大,烧结后晶粒尺寸分别为145.4 nm和289.2 nm,球磨50 h的粉末晶粒长大更明显.  相似文献   

7.
高能球磨纳米镍粉制备块体材料的研究   总被引:1,自引:0,他引:1  
采用高能球磨法制备了纳米晶Ni粉末,对纳米晶粉末进行预压烧结,获得纳米晶镍块体材料.采用显微分析方法研究了纳米晶粉末和块体材料的显微组织结构.试验结果表明,高能球磨所得镍粉平均晶粒尺寸为10 nm;预压烧结块体的平均晶粒尺寸在100 nm以下;块体相对致密度在烧结温度为0.6Tm时达到最大值.  相似文献   

8.
 以TiH2粉末为原料,通过压制成型和烧结工艺制备粉末钛合金,不同于传统钛粉末冶金方法。通过热分析和热膨胀技术研究不同球磨粒度TiH2粉末的脱氢和收缩规律,以此入手研究了TiH2粉末压坯和TiH2-Al-V粉末压坯的烧结致密特性,以及影响烧结过程的主要工艺因素,包括烧结温度、烧结时间、升温速率、压坯密度、压坯成型方式、合金体系,并对烧结组织进行了分析。结果表明,TiH2粉末球磨后脱氢温度降低,粉末越细,开始温度越低。TiH2粉末压坯在烧结过程中脱氢后获得新鲜钛,其易发生黏接并引起α-Ti的强烈收缩,这时烧结体很容易致密,并获得相对密度大于99%坯体;相比之下,TiH2-Al-V粉末压坯烧结时因为合金元素的溶解,不如纯TiH2粉末压坯的烧结容易致密。TiH2-Al-V粉末经过成型、烧结脱氢可获得典型的层片状α+β钛合金组织,合金元素分布均匀。  相似文献   

9.
采用机械合金化+热压烧结制备Cu/MgCu2复合材料.研究Mg-83.7Cu配比成分的Mg、Cu元素粉末经不同球磨时间后的物相和颗粒尺寸的变化,以及在650℃,1h热压工艺下所获得的Cu/MgCu2复合材料的组织与性能.结果表明:随着球磨时间的增加,Mg、Cu粉末的衍射峰不断宽化,粉末颗粒经历一个由粗到细的转变过程,且在前20h变化明显;且随着粉末球磨时间的增加,Cu/MgCu2复合材料的组织分布均匀,晶粒尺寸细化,致密度高,复合材料的维氏硬度、抗压强度、抗弯强度及断裂韧性也均增加,但球磨时间超过20h后增加缓慢.  相似文献   

10.
采用真空烧结-热等静压处理工艺制备碳氮化钛基金属陶瓷,考察不同热等静压处理温度和时间对材料力学性能及结构的影响.结果表明:热等静压处理可有效消除材料内部孔洞,细化组织;合理的处理温度和时间为1 550℃,30 min;与真空烧结相比,材料的抗弯强度,硬度和致密度均分别提高了22.9%,1.0%和1.2%.  相似文献   

11.
以高能球磨法制备的93W-4.9Ni-2.1Fe复合粉末为原料,采用放电等离子烧结技术制备93W--4.9Ni-2.1Fe合金,研究了烧结温度对钨合金微观组织及性能的影响.采用扫描电镜对试样的断口进行观察,采用能量色散谱仪对合金的组元进行成分分析.结果表明:①烧结温度对合金的性能有显著的影响,在1 350℃时钨合金的抗拉强度达到一个极大值,为981 MPa,此时钨合金的相对密度和W晶粒的尺寸分别为98.9%和5μm;②当烧结温度达到1375℃时,合金中Ni元素开始挥发,随着温度的快速上升,合金中Ni元素的挥发不断加剧,当烧结温度升高至1425℃时合金中Ni元素已完全挥发;③合金的断裂方式随着烧结温度的升高发生显著的变化,当烧结温度升至1350℃时钨合金的断裂方式由W晶粒界面分离向W-W、W-黏结相界面断裂转变,而当烧结温度超过此温度时钨合金的断裂方式又转变为W晶粒的沿晶脆性断裂;④SPS快速烧结能够有效抑制W晶粒的长大,促进钨合金的细晶强化作用.  相似文献   

12.
Fe60 Co20 C20超细合金粉末的结构和磁性能研究   总被引:1,自引:0,他引:1  
采用机械合金化方法制备出Fe60Co20C20超细合金粉末,对不同球磨时间的样品进行X射线衍射和磁滞回线的测量.X射线衍射分析结果表明:样品在球磨20 h后开始部分非晶化,在Fe-Co合金中加入C可促使其形成非晶;样品的晶粒尺寸随球磨时间的增加而减小,在一定的机械合金化条件下可获得Fe60Co20C20的非晶态超细合金粉末.VSM研究结果表明:球磨初期,样品的矫顽力增加;球磨20 h后,随着晶粒尺寸的降低矫顽力降低.机械球磨后晶粒尺寸是影响样品磁性能的主要因素.  相似文献   

13.
分别考察了真空和乙醇保护球磨对Mg合金粉末的影响.图像分析球磨粉末的扫描电子显微镜照片,显示乙醇保护球磨的粉末粒度较真空保护球磨粉末小,分布范围较宽,但颗粒规则度较差.X射线衍射分析表明球磨过程中粉末的晶粒尺寸逐渐减小,存在晶粒稳定值,相比之下真空保护球磨得到了更细小的晶粒.球磨初期,由于沿惯习方向的滑移在乙醇保护下获得的粉末中出现了(002)织构,但随着塑性变形的随机化又逐渐消失.X射线能量色散谱仪分析和比较表明真空保护球磨粉末中引入的O和Fe杂质较少.综合比较认为真空保护球磨Mg合金粉末的质量较好,但乙醇保护球磨更好地揭示了球磨过程中Mg合金粉末微观结构的变化.  相似文献   

14.
文章介绍了采用高能球磨法制备Cu-Zr复合粉体,采用SEM、XRD等方法研究粉体的机械合金化过程,并进一步研究了其冷压成形和烧结过程.结果表明:随着球磨时间的延长,一部分Zr固溶到Cu中,形成Cu-Zr过饱和固溶体,另一部分则与铜生成铜锆金属间化合物;粉体由片状转变为近球状,显微硬度逐渐增加;当球磨超过15 h后,复合粉体硬化,为了得到某一密度的压坯,需要更高的压制压力.  相似文献   

15.
机械合金化制备碳化钛纳米粉体的合成机理研究   总被引:1,自引:0,他引:1  
本研究中,以金属钛(Ti)粉与环己烷为原料,利用机械合金化制备了碳化钛(TiC)纳米粉体。利用X射线衍射并结合Rietveld精修对球磨产物进行定性与定量分析;借助透射电子显微镜对产物进行形貌与元素以及结晶性进行分析;对球磨过程中TiC的合成机理进行了研究。结果表明,球磨产物中主相为TiC,另有少量残留的氢化钛(TiH2)与Ti;所制备TiC粉体易于团聚、颗粒度均匀、结晶性良好;TiC合成机理属于扩散型机制。  相似文献   

16.
通过X射线衍射 (X -ray)、电子扫描电镜 (SEM)观察 ,分析了经高能球磨后互不相溶的Al -Pb混合粉末的微观组织变化。结果表明 :在高能球磨过程中软相Pb颗粒细化速度优于硬相Al颗粒 ;且球磨 2h形成Pb(Al)固溶体 ;细小的Pb颗粒均匀分散于基体中 ,并为Al颗粒所包围 ,有利于克服Al-Pb系传统制备工艺中宏观偏析现象而制备高性能的耐磨材料。  相似文献   

17.
热电材料CoSi化合物的机械合金化合成   总被引:1,自引:0,他引:1  
采用高能行星球磨的方法研究了等计量比CoSi的纯元素混合粉末的机械合金化过程.对球磨不同时间粉末的结果分析和观察表明:球磨产物为单相CoSi化合物,其晶粒尺寸随球磨的时间延长而减小,没有发生非晶化,并对此进行了热力学分析.  相似文献   

18.
固液反应球磨制备TiAl,NiAl和FeAl金属间化合物   总被引:4,自引:1,他引:4  
采用一种固液反应球磨专利技术制备了TiAl,NiAl和FeAl系金属间化合物,所谓固液反应球磨技术是在一定温度区间,球磨介质对金属液体进行球磨时,磨球和金属液体反应生成固态的金属间化合物粉末;为了加速反应进行,也可以在金属液体中加入与磨球成分相同的金属粉末。本研究对固液反应球磨与类似条件下的高能行星球磨(机械合金化)制备金属间化合物的试验结果进行了比较。发现固液反应球磨和普通的高能球磨机械合金化相比,具有更高的的效率,可以加快合金化的速率,能够生成机械合金化不能合成的金属间化合物。最后对固波反应球磨的机理和特点进行了探讨。  相似文献   

19.
在不同的球径、转速、球料比和球磨介质等条件下,对多种微细粉末(Fe,Cr,Ni,Mo,C,WC和TiC)进行了一系列球磨试验.结果发现,采用高转速、大球料比、合适的球径以及湿磨状态可以改善球磨效果.另外,单质粉末的晶体结构类型是决定其球磨难易程度的一个重要因素.对于金属碳化物,则主要归因于其脆性的影响.此外,还探讨了单质铁粉在球磨过程中粒度与时间的数学关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号