首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了研究沿海环境双块式无砟轨道结构早期湿度和收缩应变分布特征,基于ABAQUS子程序HETVAL建立有限元模型,研究混凝土浇筑早期湿度和湿度梯度分布形式,得出道床板收缩应变分布规律。研究结果表明:1)在洒水养护期时,底座板竖向和横向湿度梯度最大值分别为0.68%/mm和0.202%/mm;受环境湿度影响较大的区域为埋深90 mm,底座板内部湿度在龄期28 d时趋于一致。2)轨枕内部相对湿度随着龄期增加而逐渐下降,浇筑第56天时轨枕内部湿度基本一致。3)道床板浇筑后,轨枕表面的最大竖向和横向湿度梯度分别为1.64%/mm和0.59%/mm;在道床板浇筑35 d时,双块式无砟轨道内部湿度基本一致。4)在洒水养护阶段,轨枕与道床板界面的自由收缩应变最大值为270.58×10-6;在自然养护阶段,受大气湿度影响,其收缩应变与湿度变化幅度呈线性相关;道床板表面在湿度饱和期的收缩应变占总收缩应变的58.21%。  相似文献   

2.
通过对我国中部山区复杂地形地质条件下高速铁路桥隧过渡段无砟轨道钢轨和道床板纵向温度分布的连续观测,得到桥隧过渡段钢轨和道床板的纵向温度分布规律,并提出适用于春季的桥隧过渡段钢轨和道床板纵向温度梯度荷载模式.结果表明:从隧道外到隧道内,钢轨温度变化幅值不断减小,隧道内75 m处的钢轨温度峰值出现时刻比隧道外22 m处的滞后4 h;钢轨纵向温度随隧道径深增加变化最大的位置位于0~8 m区间,隧道深75 m以后,钢轨的温度变化幅度明显变小,基本稳定在0.2℃;道床板纵向温度随隧道径深增加变化最大的位置位于0~8 m区间,隧道深25 m以后,道床板的温度变化幅度明显变小,基本稳定在1.7℃;一天中钢轨和道床板温度沿纵向变化幅度最大的时刻出现在14:00~16:00;纵向温度梯度模式可分为钢轨和道床板两类,钢轨和道床板纵向温度梯度均可采用分段函数进行拟合.  相似文献   

3.
在某客运专线圆曲线段桥上纵连板式无砟轨道中埋设温度传感器,对无砟轨道温度分布进行了长期连续观测,得到无砟轨道温度场分布的时变规律,并建立适用于寒冷季节纵连板式无砟轨道横竖向温度梯度荷载模式.结果表明:轨道结构的温度变化以日为周期,随着距表面深度的增加,无砟轨道内温度变化幅值逐渐减小,峰值时间不断滞后;竖向温度梯度可拟合为指数曲线,与中国铁路桥梁设计规范规定的箱梁竖向温度梯度分布在形状上较为相似;横向温度梯度模式分为轨道板和底座板两类,轨道板横向温度梯度可采用二次函数拟合回归,底座板横向梯度可采用线性分段函数拟合.  相似文献   

4.
为得到桥上纵连板式无砟轨道在夏季高温环境下的温度分布规律,在某客运专线上的CRTSⅡ型纵连板式无砟轨道中埋设温度传感器对其内部温度进行长期连续观测,得到无砟轨道内温度分布规律以及无砟轨道内横、竖向温度梯度荷载模式。研究结果表明:无砟轨道在与外界进行热交换的过程中,内部温度分布呈现明显的非线性并随环境温度呈周期性变化;随着轨道结构深度增加,不同位置出现的温度峰值逐渐减小,出现时间不断滞后,夏季底座板底部较轨道板顶部出现峰值时间一般滞后3 h,无砟轨道竖向温度梯度分布曲线符合指数分布规律,与中国铁路设计规范规定的箱梁竖向温度梯度分布曲线在形式上较相近;横向梯度分布曲线宜采用三段线分别拟合。  相似文献   

5.
为合理评价水泥路面温度沿深度方向的非均匀性分布对水泥混凝土板的应力和变形的影响,利用有限元软件模拟非线性温度梯度荷载;为分析不同程度非线性温度梯度对板的应力响应引入了非线性温度分布指数.研究结果表明:以线性温度梯度计算非线性温度梯度应力时,正温度梯度的应力偏大,负温度梯度的应力偏小.非线性温度梯度时板的变形和线性温度梯度板产生的变形则基本相同.负非线性温度梯度分布时:随着板厚和板弹性模量的增加,非线性温度梯度对板顶的应力影响增大;增加地基反应模量可以减小非线性温度梯度影响.并通过大量数据回归分析得出负温度梯度时板顶下最大应力计算公式.  相似文献   

6.
温度作用对高速铁路箱梁-轨道整体工作性能有重要影响,通过对我国东南地区某32m简支梁-CRTS I型双块式无砟轨道结构温度的持续监测,重点研究了箱梁-轨道系统日温度变化规律与竖向温度梯度分布规律,基于全年每测点16 560个数据,采用高阶矩法确定具有一定重现期的箱梁-轨道系统竖向温差代表值,提出了适用于我国东南地区箱梁-轨道系统的竖向温度梯度拟合模式.研究表明:可采用一阶傅里叶级数模拟结构晴天温度升降变化特征,拟合程度较高,同一季节拟合参数a、b、ω与φ自上而下逐渐减小,温度波动幅值a随深度增加趋近于0℃;不同季节各截面竖向晴天温度日变化特征基本一致,于11:00~21:00前后出现正温度梯度,于01:00~9:00前后出现负温度梯度;轨道-箱梁整体对应超越概率0.01的竖向正负温差代表值分别为14.87℃与-6.3℃,箱梁顶板对应超越概率0.01的正负温差代表值分别为13.74℃与-3.54℃,底板为2.38℃与-1.12℃,可采用指数对箱梁顶板竖向正负温差代表值进行拟合,其分布规律在形式上与中国铁路桥梁规范相接近,可采用线性形式对底板温差代表值进行拟合,两种拟合形式相关系数的平方均在0.99以上,可为规范修正与桥梁设计提供参考.  相似文献   

7.
通过对我国东南地区某简支梁桥上CRTS Ⅰ型双块式无砟轨道结构温度场的持续监测,重点研究了夏季高温下轨道结构温度梯度分布规律,采用高阶矩法建立了轨道结构夏季温度及温差概率统计模型,确定了具有一定重现期的轨道结构温度与温差代表值,提出适用于我国东南地区CRTS Ⅰ型双块式无砟轨道结构的夏季横、竖向温度梯度拟合模式.试验研究表明:夏季轨道中部从上至下对应超越概率0.01的高温代表值依次为47.7℃、40.1℃、36.9℃与35.8℃;晴天温度梯度分布均匀,轨道结构横、竖向分别于17:00、15:00达到最大,温差可达6.7℃、12.2℃;竖向和横向对应超越概率0.01的正负温差代表值分别为16.16℃、-6.32℃与7.75℃、-4.43℃;竖向正负温差代表值采用指数形式进行拟合,其分布规律与中国铁路桥梁规范相近,横向正负温差代表值可采用折线形式进行拟合,精度较高.  相似文献   

8.
为了明确橡胶混凝土道面的温度场分布与演化特征,基于光纤光栅测试技术,建立了橡胶混凝土道面现场温度信息的连续监测,研究了橡胶混凝土道面早龄期(0~4 d)和长期(9~84 d)的温度场演化特征,并且以普通混凝土道面为参照,对比分析了橡胶颗粒的加入对混凝土道面长期温度场演化特征的影响。基于温度分布统计,研究了橡胶混凝土道面和普通混凝土道面温度场的频率分布特征。结果表明:在早龄期温度演化的第1、第2阶段,水化放热是影响橡胶混凝土道面温度场的主要因素;在橡胶混凝土道面的零应力温度时刻,道面板中的温度高于板顶和板底,温度梯度为-12.0℃/m;在混凝土固化阶段,负温度梯度将导致橡胶混凝土道面产生翘曲固化残余应力。长期监测结果表明橡胶颗粒的加入使混凝土对温度变化的敏感性降低,使混凝土道面在降温阶段的板中温度明显变高;橡胶混凝土道面的最大日平均正温度梯度是普通混凝土的6.85倍,而最大负温度梯度只有普通混凝土道面的51%;在一个温度变化周期(24 h)内,橡胶混凝土道面温度的日变化曲线呈现明显的日不对称性,降温时长是升温时长的2倍。温度分布统计结果表明橡胶颗粒的加入可以有效降低混凝土道面出现负温度梯...  相似文献   

9.
为了研究我国东北地区机场水泥混凝土道面板板角温度分布规律及温度-应力/应变关系,依托新建松原查干湖机场道面工程开展道面温度翘曲试验,应用智能温度、应变传感器监测板角不同深度处的温度与应变、应力日间变化和季节性变化差异。研究结果表明:板内温度-应变增量日间变化规律具有明显的滞回特性,且板顶同一点横向温度-应变增量滞回圈面积比纵向的大;板内应力的日间变化具有近似周期性波动特征,波动峰值滞后温度波动峰值约1h,且任一时间板内同一点纵、横向应力相差不大。板内温度及应变、应力受季节性环境温度影响显著,随环境温度的降低,板内正、负温度梯度的日间交替持续时间有明显变化;板内温度-应变增量滞回圈面积逐渐减小;板顶最大压应力逐渐减小,最大拉应力几乎不受影响。  相似文献   

10.
为研究寒冷地区钢箱组合梁桥温度梯度模式,选取山东枣木高速公路某钢箱组合梁桥开展温度监测,共获取12个月的温度监测数据,基于概率统计方法确定了寒冷地区钢箱组合梁桥温度梯度模式标准值.研究结果表明:钢箱组合梁桥正、负温度梯度模式的双折线模型能够合理反映截面温度分布情况,其中负温度梯度在混凝土层内沿竖向方向先减小、后增大,在...  相似文献   

11.
通过大气环境下水泥基材料热湿耦合传输试验,考察了温湿度梯度对湿传输、温湿度分布的影响。试验结果表明,湿传输随着温湿度梯度的增大而加快,且温度梯度比湿度梯度对湿传输的影响大;温度梯度比湿度梯度对温度分布的影响大;温湿度梯度对相对湿度分布的影响都比较大。因此,在水泥基材料热湿耦合传输过程中,水泥浆的湿传输比砂浆快,且应考虑热传输对湿传输的影响,但湿传输对热传输的影响可以忽略。计算结果表明,热湿耦合传输模型对水泥基材料具有较好的适用性。  相似文献   

12.
单箱三室箱梁温度效应复杂,在王家河特大桥箱梁混凝土内埋置了89个温度传感器、并布置了光电辐射传感器与风速传感器,采集频率均为1次/20min。利用无线采集模块进行数据采集,得到单箱三室箱梁太阳辐射温度场分布规律。研究结果表明:太阳辐射测试结果存在季节性,夏季太阳辐射强烈,风速测试结果无明显季节性;受太阳辐射作用影响,向阳侧边腹板竖向温度梯度大于背阳侧竖向温度梯度,夏季竖向温度梯度大于冬季温度梯度;受对流作用影响,中腹板除顶底部测点外变化极小可被忽略;受太阳高度角影响,冬季向阳侧照射时间比夏季长。冬季箱梁最大横向温度梯度为12.0℃,大于夏季的4.7℃;箱梁横向温度梯度成U型分布,背阳侧横向温度梯度的98%超越概率值为6.472℃,首次提出基于向阳侧和背阳侧温度梯度的中国铁路规范的修正公式;建立考虑遮阴长度的温度场模型,揭示了向阳侧腹板横向温度梯度冬季大于夏季的原因。  相似文献   

13.
为得到圆曲线上无砟轨道结构温度场分布的时变规律,在某客运专线圆曲线段上的CRTSⅡ型纵连板式无砟轨道中埋设温度传感器,对其温度分布进行了长期连续观测,在大量测试数据的基础上通过概率统计获得无砟轨道横、竖向温度梯度荷载模式.结果表明:无砟轨道结构在与外界的热交换过程中,其内部竖向和横向温度呈非线性分布;轨道结构温度随着环境温度变化呈现周期性变化;随着与表面距离的增加,不同位置处出现温度峰值的时间存在明显滞后,轨道结构底部出现温度峰值的时间比顶部延迟约5 h;无砟轨道竖向温度梯度分布曲线符合指数分布规律,与中国铁路设计规范规定的箱梁竖向温度梯度分布曲线在形式上较为相近.  相似文献   

14.
以西安西咸新区沣河大桥单箱三室预应力混凝土箱梁桥为研究对象,进行断面温度分布测试,研究箱梁的温度分布规律,讨论了箱梁的温度分布模式和温度基数,提出了指数函数和线性函数相结合的温度梯度模式。结果表明:受环境温度影响,外表面的混凝土温度每天随环境温度急剧变化,内表面除上翼板内侧外其余位置温度比较恒定;从竖向温度分布看,一维热传播理论适用于上翼板和下翼板,但不适用于腹板,且下翼板内外表面温差显著;最大正温度梯度主要出现在夏季,而最大负温度梯度主要出现在冬季。  相似文献   

15.
基于东南地区某32m简支梁-CRTS Ⅰ型双块式无砟轨道2a的实测温度数据,提出基于GPD模型的温度梯度尾部数据拟合方法,重点研究了箱梁-轨道系统竖向温度梯度分布规律,并对箱梁-轨道系统的竖向温度梯度尾部数据极值进行了估计,提出现场实测最大温度梯度模式与对应估计100a重现期的温度梯度拟合模式.研究表明:GPD模型可对尾部极值温度数据进行很好地拟合,预估不同概率需求的温度梯度荷载值;箱梁-轨道系统截面Ⅰ与截面Ⅱ日温度梯度变化特征基本一致,于11:00~21:00前后出现正温度梯度,16:00达到最大,于01:00~9:00前后出现负温度梯度,7:00达到最大;采用GPD模型计算对应100a重现期估计值,截面Ⅰ最大正温差的实测值与估计值分别为15.2℃和23.36℃,截面Ⅱ为17.4℃和24.4℃,采用不同形式对箱梁-轨道系统竖向梯度实测正负温度梯度最大值与100a一遇估计值进行拟合,拟合相关系数的平方均在0.98以上,可为规范修正与桥梁设计提供参考.  相似文献   

16.
利用上海浦东国际机场"道面状态监测系统"实测的温度、应变和弯沉,分析了水泥道面温度以及温度作用下道面翘曲变形、弯沉、接缝传荷能力的变化.结果表明,土基和基层温度日变化较小,但季节性变化较大;道面板温度沿板厚分布呈非线性,下午时段更显著;全年正、负温度梯度占比基本相同,零温度梯度集中在7:00~10:00和19:00~22:00,且全年呈周期性;此外,在横缝(假缝)和纵缝(企口缝)板边中部以及板角,温度翘曲变形呈同步周期性变化,板角处最大,纵缝(企口缝)板边中部最小,向上(下)翘曲变形的全年最大值均分布在12月~1月(7月~8月);板中最大弯沉基本保持不变,而板角和横缝(假缝)板边中部最大弯沉日变化和季节性变化显著;假缝和企口缝的传荷能力随平均温度的增大而增大,具有良好的二次曲线关系.建议在道面设计和评价中考虑温度作用的影响.  相似文献   

17.
为获得沥青铺装高温摊铺时钢箱梁温度分布特征,以某长江大桥为研究对象,在桥面板底部横向和横隔板竖向布设25个温度传感器,测试浇注式沥青混合料摊铺时钢箱梁内部主要构件的温度,通过数据分析和模拟,获得钢箱梁最不利温度梯度,并建立桥面顶板底部最高温度的预测公式。结果表明:桥面板底部最高温度达到84℃,最大升温幅度达到67℃,平均升温速率达到0. 83℃/min,局部时段上升至2. 10℃/min;温度的影响范围主要分布在摊铺范围内周边1. 2 m,最不利横向和纵向温度梯度分别为58℃/m和10℃/m,而竖向温度梯度可采用指数函数模拟;桥面板底部最高温度可由气温、混合料摊铺温度和厚度进行预估。由分析结果可见,沥青铺装摊铺高温使钢箱梁在局部区域形成较大的温度梯度,可作为温度应力分析的依据。  相似文献   

18.
以高速铁路CRTSⅡ型板式无砟轨道为研究对象,通过建立CRTSⅡ型无砟轨道结构有限元模型,分析了温度梯度、日照温度曲线对轨道板变形的影响规律。研究结果表明,存在正温度梯度时,轨道板将产生上拱变形;存在负温度梯度时,轨道板将产生下挠变形,纵连钢筋对温度变形起到一定的抑制作用。随着日温度的变化,中午14时的轨道板结构翘曲变形最大;早上6时的轨道板翘曲变形最小。  相似文献   

19.
早龄期混凝土内部湿度发展特征   总被引:14,自引:0,他引:14  
早龄期混凝土内水分含量是监控混凝土结构开裂的重要参数之一。该文采用数字式温湿度传感器,研究了早龄期普通与高强混凝土内部湿度随浇筑龄期的发展规律。实验结果表明,随浇筑龄期的增长,混凝土内湿度逐渐降低。湿度随龄期的发展规律可描述为早期的水汽饱和期(阶段I,相对湿度100%)及随后的湿度逐渐减小期(阶段II,相对湿度<100%)。阶段I的长短及阶段II中湿度降低的幅度与混凝土水灰比及所在位置有关。早龄期混凝土内水分含量沿高度分布不均,存在明显的湿度梯度。  相似文献   

20.
为研究日温变化对机场水泥道面的影响,系统监测分析了日周期内西南某机场水泥道面板内温度、应变及弯沉的变化规律。结果表明:板内温度、平均温度及温度梯度均呈日周期变化,正、负温度梯度最大值分别出现在14:00— 16:00、07:00—08:00;应变与温度不同步变化导致其随温度滞回变化,以温度梯度?曲率分析道面温度效应可减少滞回特征影响;板角翘曲大于板边,接缝类型差异对板边翘曲影响更大;道面边、角弯沉随日温变化波动明显,接缝传荷系数波动主要受温度梯度变化影响,道面性能评价应考虑温度影响;接缝两侧弯沉之和与温度相关性高,且可能与接缝传荷能力无关,在考虑温度影响进行脱空判定时具有一定优势,建议进一步研究其特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号