首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 四足机器人的仿生脊柱对提高机器人非结构化环境的机动性和稳定性具有重要作用。系统分析了国内外四足机器人仿生脊柱的研究现状,将仿生脊柱分为局部柔顺脊柱和整体柔顺脊柱两类,对比分析不同四足机器人仿生脊柱的结构特点,提出未来发展趋势。四足机器人仿生脊柱从传统的整体刚性结构向刚柔耦合结构方向发展,具有类生物变刚度、可柔顺弯曲特性的新型仿生脊柱突破仿生驱动、神经元精细控制等关键技术,向高效能量转换的类生物系统方向发展。  相似文献   

2.
四足机器人气动人工肌肉驱动的仿生柔性机体动力学分析   总被引:2,自引:0,他引:2  
基于四足生物动态步行时其柔性机体辅助腿机构的运动机理,设计了一种由气动人工肌肉、仿生脊柱、前机体和后机体组成的四足机器人仿生柔性机体.采用几何法分析仿生柔性机体运动学,建立四足机器人转向时仿生柔性机体弯曲角与气动人工肌肉长度变化间的关系,通过控制气动人工肌肉长度以控制机体弯曲.基于浮动坐标法和动量矩定理进行仿生柔性机体刚柔耦合动力学建模,对比分析了不同机体刚度下机体弯曲所需气动人工肌肉驱动力.设计仿生柔性机体弯曲控制实验系统,采用PID控制算法进行机体弯曲实验分析.四足机器人的仿生柔性机体分析,为提高其非结构化环境机动性奠定了基础.  相似文献   

3.
连续型机器人具有本质柔顺的本体结构,由此带来的环境适应性和安全性得到了人们的广泛关注.然而柔软的结构也可能导致机器人负载能力和定位精度的不足.针对这种情况提出了一种全新的混合驱动连续型机器人,能够平衡结构柔顺性、定位精度、刚度等性能.该机器人的驱动器在传统气动肌肉的基础上内置弹性杆,保持了系统的紧凑性.通过模式切换机构使驱动器能够在气压驱动与弹性杆驱动两种模式间切换以实现大范围运动和小范围精确定位,并在这个过程中拥有不同的刚度.当机器人进行大范围运动时,由气动肌肉提供主要的行程和输出力;当机器人到达指定工作位置附近时,由直线电机牵引弹性杆驱动机器人末端实现精确定位并提高机器人的刚度.基于力平衡的原理建立了混合驱动器的气压-长度模型,通过模型仿真与实验结果的对比,发现驱动器死区的存在并修正了该模型,验证了机器人驱动器抗迟滞的特性.通过不同姿态与驱动方式下对机器人施加外力的实验证明了机器人的变刚度特性.通过对机器人末端的定位实验验证了混合驱动连续型机器人的重复定位能力相较于单纯气压驱动方式有显著增加.结果表明,通过混合驱动的方式提供了一种具有变刚度效果并能有效增强柔性连续型机器人定位精度的方法.  相似文献   

4.
基于力控制模式的四足仿生机器人的动力学仿真   总被引:1,自引:0,他引:1  
针对四足仿生机器人,研究了基于力控制模式下的四足仿生机器人的动力学仿真实现方法.首先利用虚拟现实建模语言对四足仿生机器人进行仿真模型的建立和有关参数的定义;然后对四足仿生机器人按照空间向量代数建立运动学方程;接着,采用迭代牛顿-欧拉算法对四足仿生机器人进行逆动力学分析,以求得在力控制模式下的动力学仿真所需的各关节驱动扭矩,并建立了基于机器人中间件的动力学仿真系统.最后,通过四足仿生机器人在对角小跑步态下的动力学仿真实验,验证了该方法的有效性和实用性.  相似文献   

5.
随着仿生机器人技术的不断进步,其应用领域越来越多。以"探索者"模块化机器人平台为基础,探索多足仿生机器人的运动控制规律,首先,对探索者机器人实验平台的组成进行了介绍;其次,根据仿生机器人的行走原理来构建仿生四足机器人3D模型,并进行实物搭建;最后,通过对蜥蜴的肢体运动规律进行研究,利用编程实现机器人对蜥蜴步态的模拟。  相似文献   

6.
液压足式机器人由于其负载能力强,动态性能优越得到广泛的关注。针对液压足式机器人能量调节及其单腿弹跳运动控制问题,将液压足式机器人单腿等效为弹簧负载倒立摆(SLIP)模型,并提出了一种主动变刚度的控制策略,可以使液压足式机器人单腿在着地时刻进行能量调整,并使其达到期望的弹跳高度。实验结果表明,本文提出的控制方法可以实现液压足式机器人单腿稳定弹跳,并有效控制弹跳高度。   相似文献   

7.
在分析仿生甲虫生物原型的特点及运动机能的基础上,进行了仿生甲虫六足机器人的结构设计与样机设计,运用机器人的结构仿生和功能仿生原理,基于甲虫原型设计了六足机器人,给出了每足3自由度的机器人结构。原型样机是以身体纵向中心线为对称的八边形设计,6条腿均布身体两侧,所有腿关节均由伺服电机驱动,关节间连接构件采用性能良好的合成塑料代替金属构件,设计从结构上保证了仿生机器人能够有效地模拟甲虫的运动能力。通过对仿生甲虫机器人三足运动步态,特别是直线行走步态和定点转弯步态的分析,给出了直行和转弯动作时6条腿的末端位置矢量表达式,利用SOLIDWORKS和ADAMS软件进行了机器人运动仿真,结果证明仿生甲虫机器人运动平稳,满足设计要求。  相似文献   

8.
从地形的局部几何特征入手,提出了仿生六足机器人在非结构化地形下的落足点选取方法.通过对机器人落足原理的分析,结合足端形状提取外部地形的几何特征,设计了选取落足点的效用函数,并通过专家示教对其进行学习;利用支持向量机获得效用函数的数学表达.对模拟地形进行仿真实验,验证了该选取方法对落足点评估的有效性.  相似文献   

9.
连续型机器人是一种新型的仿生机器人,由于其内在的柔顺结构,适合在狭小复杂等领域中进行探测、抓持等操作.相比于传统的刚性机器人,连续型机器人不仅具有更高的安全性,而且有望获得更高的灵活性,但是目前却很少有针对连续型机器人的灵活性展开分析的研究.针对这种情况,设计开发了一种采用模块化关节的连续型机器人,基于运动学模型与雅可比矩阵等相关概念,对连续型机器人的局部灵活性指标以及全域灵活性指标进行了定义和计算,并发现当机器人的总长在一定范围内、采用不同关节长度设计时,对应的工作空间中各末端点灵活性分布存在较大的差异.而后,结合连续型机器人的结构特点,引入粒子群仿生优化算法,利用灵活性来指导机器人的关节长度设计,使机器人获得全域灵活性指标下最优的关节灵活性.最后,引入操作灵敏度指标来对采用最优关节长度设计的连续型机器人进行直观的灵活性仿真与实验验证,并与传统的各关节长度一致的结构设计进行了对比实验.结果揭示了机器人灵敏度指标与基于雅可比矩阵条件数的灵活性指标之间的关系,即灵活性较高的末端点其各向灵敏度分布亦较为均匀.  相似文献   

10.
为了实现脊柱型四足机器人在粗糙可变地形上的对角小跑运动,在运动学分析的基础上提出了基于中枢模式发生器的控制方法,包括步态规划、地面倾角估计、姿态控制、碰撞反射、踏空反射和侧向步反射6个模块.步态规划生成控制机器人运动的腿部和脊柱关节信号;地面倾角估计估计地形倾角,并根据倾角调节规划的足端轨迹;姿态控制控制机体和地面保持平行并控制机器人的航向角;碰撞反射控制摆动腿在碰到障碍物时可以快速越过并恢复到规划的运动轨迹;踏空反射控制支撑腿在遇到下凹地形时可以快速撑地并恢复到规划的运动轨迹;侧向步反射抵消外力的影响,防止机器人侧向倾覆.通过控制机器人在不同地形运动可以分步调节并确定各模块的控制参数.仿真结果显示,利用提出的控制方法脊柱型四足机器人可以顺利通过包含外力干扰、台阶、斜坡和楼梯的结构化地形,以及由不同角度随机排列直角三角体模拟的粗糙地形、由不同角度随机排列直角三角体和球形颗粒模拟的粗糙可变地形.  相似文献   

11.
为了提高四足机器人的奔跑性能,设计了一种具有柔性脊椎的四足机器人.该柔性脊椎由两个平行橡胶棒和一个驱动液压缸组成,通过控制驱动液压缸的伸缩可使两个平行橡胶棒实现上下弯曲.分析了该四足机器人的柔性脊椎对奔跑步长的影响.基于Hopf模型的CPG控制方法,推导了髋关节和膝关节的关节驱动曲线幅值的表达式,并通过网络拓扑结构的重建将脊椎驱动信号与各腿部关节驱动信号进行耦合.最后利用Adams和MATLAB/Simulink对四足机器人进行了bound步态仿真,仿真表明具有柔性脊椎的四足机器人奔跑性能显著提高.  相似文献   

12.
目前大多数四足机器人以刚性腿部结构设计而成,部分机器人加入了单一自由度的腰部实现单方向的运动,但是总的来说都难以实现动物腿部肌肉、腰、脊椎关节的柔性运动。在四足动物中,猫拥有极强的运动灵活性。为更好地模拟猫的运动特性,参照猫的腿部骨骼结构和柔性组织,提出了一种具有柔性腿部和主动腰部的仿猫四足机器人设计方法。首先,从仿生学的角度研究猫的生理结构和运动方式,设计了包含弹簧-阻尼器系统四杆机构的柔性腿部,转动灵活且工作稳定的主动腰部和带有脊柱固定系统的前后躯干。同时,使用有限元分析工具对受力情况复杂的关键零件进行强度与刚度优化。之后,开发了运用新设计的仿猫四足机器人原型机,通过运动仿真软件配合原型机,进行了Trot步态行走、跳跃、落地缓冲和越障等实验。实验结果表明,相较传统的刚性腿部结构和单自由度腰部,应用该设计方法的四足机器人在运动性能方面有着显著优势,充分验证了其可行性与有效性。研究结果为四足机器人的设计提供了一种新的解决方案并给出了其理论依据和参考设计实例。  相似文献   

13.
随着科技的发展和生活的需要,柔性抓手因其安全性和柔顺性逐渐成为了研究热点。捕蝇草作为一种能够实现包络抓取的植物,其运动特点对于柔性抓手的抓取运动具有较好的参考性。文中根据软体网格结构和捕蝇草的变形机理,提出了一种由双仿生叶片组成的液压驱动仿生捕蝇草柔性抓手结构。首先基于本构模型提出了完全嵌入式单列网格弯曲角度和压力关系的数学模型,然后基于仿真模型分析了多列网格弯曲角度和压力的关系,确定了柔性抓手0.040 MPa的工作压力。通过分析仿真结果,得出了边缘不完整网格的弯曲角度变化和受力均大于完整网格的结论,证明了不完整网格处是柔性抓手强度的薄弱点。进行了液压驱动和气压驱动仿生叶片的弯曲实验和闭合力实验,证实了在工作压力下液压驱动的性能优于气压驱动,确定了柔性抓手0.010 MPa的准备压力。最后通过适应性实验证明了所设计的柔性抓手能抓取不同形状的物体,证实了最大负载能力达304.3 g。文中设计的液压驱动仿生捕蝇草柔性抓手可以为活体昆虫捕捉和无损采摘提供有效的解决方案,也可为仿生植物机器人的研发提供理论和技术基础。  相似文献   

14.
针对变负载下接触环境刚度不确定时液压驱动机器人末端执行器动态性能差的问题,提出了基于时间-误差绝对值积分控制器(ITAE)的液压串联弹性执行器(SEA)动态位置控制方法。首先,根据液压缸的流量连续性方程和活塞与负载的动力学方程,以负载与活塞的位移、速度及负载压力差作为状态变量,运用状态空间法建立液压SEA的五阶状态空间模型;然后,考虑系统带宽、阻抗和重载工况对串联弹簧刚度的不同要求,确定出串联弹簧刚度范围,兼顾系统的快速响应性和稳定性,对时间与误差的绝对值乘积积分,构建基于ITAE的控制器;最后,采用ITAE控制器实现变负载下液压SEA动态位置的精确控制。仿真实验结果表明:在纯惯性负载下,ITAE控制器相比基于灰狼优化的PD控制器(GWO-PD控制器),响应速度快12.5%,稳态误差减小93%;在纯惯性-复合负载切换工况下,当串联弹簧刚度变化时,ITAE控制器相比GWO-PD控制器,响应速度快80%,稳态误差减小18%,而GWO-PD控制器在弹簧刚度较小时产生高频振荡,最大振荡为13.83%;当接触环境刚度变化时,ITAE控制器相比GWO-PD控制器,响应速度快81%,稳态误差减小45...  相似文献   

15.
基于弹簧负载倒立摆的足式机器人单腿等效模型是移动机器人领域重要的步态分析模型. 液压足式机器人由于其超强的负载能力以及高动态性能而越来越受到重视. 液压驱动的弹簧负载倒立摆模型作为液压足式机器人关节型机械腿的单腿等效模型,对于液压足式机器人的步态研究具有重要的意义. 本文考虑液压驱动的弹簧负载倒立摆单腿等效模型的单自由度弹跳问题,提出了一种基于主动柔顺的弹跳控制方法,依次对单腿等效模型着地相下降阶段和着地相上升阶段进行独立控制,仿真分析了相关系统参数对弹跳性能的影响,实际弹跳实验表明本文提出的方法能够减小着地冲击力,同时能够对弹跳高度进行有效控制.   相似文献   

16.
SCS(Simulation Construction Set)是Yobotics公司开发的对机械设备、仿生机械系统等复杂的多刚体系统进行运动仿真的软件包.基于SCS开发出一套面向四足仿生机器人的专用运动仿真平台,包括四足仿生机器人机构建模、基于VMC(Virtual Model Control)的动力学建模、地面接触模型及环境建模和数据处理模块设计.利用该仿真平台对一款16自由度四足仿生机器人的动态行走进行了仿真.结果表明:仿真过程流畅、快速、机器人行走平稳,验证了该仿真平台的实用性和可靠性.  相似文献   

17.
提出一种串联机器人加工系统关节刚度的高精度辨识方法.首先,基于雅克比矩阵的Frobenius范数,得到串联机器人加工系统的灵巧性,并确定工作空间内可达姿态的灵巧性数值分布情况.然后,分别选取4组不同等级灵巧性的姿态进行关节刚度辨识实验,并计算出相应姿态下的关节刚度.最后,对辨识出的4组关节刚度的末端变形计算值与测量值进行相对误差分析.结果表明:随着灵巧性的增大,机器人关节刚度辨识的准确性越高;相较于灵巧性较小的姿态,灵巧性较大的姿态的末端变形计算值与测量值的相对误差可降低20%~50%.  相似文献   

18.
基于某汽车白车身几何模型,建立其有限元分析模型。提出一种白车身静态弯曲刚度解析方法,对白车身进行静态弯曲刚度仿真分析,得到白车身关键点的Z向位移变化量,获取了白车身弯曲变形曲线。同时结合静态弯曲刚度解析方法,得到白车身静态弯曲刚度,并通过试验进行了静态弯曲刚度验证。研究结果表明:白车身静态弯曲刚度有限元分析和试验结果分别为13108.88 N/mm和14421.21 N/mm,相对误差为9.10%,有限元分析和试验结果基本吻合,可以为工程开发人员提供参考。  相似文献   

19.
仿生四足机器人嵌入式控制系统设计与实验分析   总被引:1,自引:0,他引:1  
仿生设计一款小型的单腿具有四自由度的仿生四足机器人,开展机器人运动学正逆解分析。基于ARM Cortex-M3内核的嵌入式芯片建立了机器人控制系统。该控制系统以半双工串口通讯方式向各个关节数字舵机发送步态数据包,控制舵机转动角度值,从而精确地控制四足机器人的稳定协调运动。实验结果表明:机器人在行走过程中机身的横滚角、俯仰角、偏航角(RPY角)变化较小,运动较为平稳,验证了机器人运动学正逆解准确性;以及所设计的嵌入式控制系统能较为精确地控制四足机器人运动,实现稳定的四足行走。该小型的嵌入式控制系统具有运算处理速度快、外设可扩展性和存储能力强的优点,满足仿生四足机器人智能算法、低功耗运动要求。  相似文献   

20.
为满足四足机器人高速奔跑运动性能所要求的脊椎具有柔性和腿结构具有良好的缓冲性能要求,在仿猎豹四足机器人上设计了一种液压驱动的柔性脊椎和腿结构.该脊椎是变截面梁,中间有柔性.该腿结构有髋关节和膝关节,有3个自由度,髋关节有2个主动自由度,即侧摆自由度和俯仰自由度,膝关节具有被动的俯仰自由度.对该脊椎进行了力学分析,对该腿结构进行了刚度特性分析和运动学分析,并对机器人进行了Bound步态仿真.仿真结果表明,这种具有柔性脊椎和非线性刚度变化的腿结构的仿猎豹四足机器人,能够以Bound步态实现较快的稳定奔跑,且足端接触力较小,由此验证了柔性仿猎豹四足机器人脊椎和腿结构的设计是有效的.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号