首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
原位增韧β-Si3N4/α-Sialon复相陶瓷   总被引:3,自引:0,他引:3  
通过XRD, SEM和力学性能测试研究了β-Si3N4/α-Sialon复相陶瓷热压烧结的致密化、相组成、力学性能和微观结构.结果表明,β-Si3N4/α-Sialon复相陶瓷综合了β-Si3N4和α-Sialon的力学性能,可通过改变起始粉末的组成,可以调整相组成及裁剪材料的力学性能.由于加入具有大的长径比的物相β-Si3N4,提高了材料的强度和韧性.  相似文献   

2.
综述了氮化硅及其复相陶瓷超塑性的研究进展,论述了Si3N4及Sialon陶瓷的超塑性变形机理、微观特性和断裂特性。在Si3N4和Sialon陶瓷的超塑性变形中,α→Si3N4(β′-Sialon)的相变以及β-Si3N4(β′-Sialon)的长大和晶界玻璃相的析晶引起的纤维强化,将影响Si3N4陶瓷超塑性的流变特性。晶界玻璃相的重新分布使Si3N4的变形由牛顿流变向剪切增厚转变。变形中的孔洞损伤和裂纹尖端的氧化引起裂纹的扩展,导致Si3N4的延伸率降低。  相似文献   

3.
以9组不同配料比的炭黑和单质硅为原料压制成试样, 在氮气气氛下,分别于1350,1400,1450,1500,1550℃下烧结,获得5个不同温度点合成样品: 采用XRD分析技术研究试样的物相演变过程, 研究C-Si系原料在氮气气氛合成过程中的物相变化和反应动力学机制.试验结果表明:试样在氮气气氛下合成,最终物相为SiC,α-Si3N4和β-Si3N4,硅含量高时还存在Si2N2O相,石英相和方石英相作为中间产物出现:氮化硅不仅可由单质硅氮化生成,还可由SiO2,Si2N2O与C还原氮化生成,α-Si3N4先于β-Si3N4生成,且温度升高会向β相转化,温度高于1500℃时,Si3N4会与残余的C反应生成SiC:合成温度和配料比是影响C-Si系原料合成产物的重要动力学因素.  相似文献   

4.
复相α/β-Sialon的合成及其烧结研究   总被引:1,自引:0,他引:1  
通过-αSialon原料中加入Si,Al,Al2O3,在流动N2气氛中烧结,生成复相α/-βSialon材料.运用X射线衍射仪、扫描电子显微镜分别对不同烧结温度试样的晶型、微观形貌进行了表征.主要探讨了不同的烧结温度对试样的耐压强度和体积密度的影响.结果表明:1 500℃材料烧结时,能制备出致密、耐压强度高的复相α/-βSialon材料.  相似文献   

5.
以Si3N4,Al2O3,SiC及少量SiO2为原料,研究Al2O3-SiC-Si3N4复相材料在埋炭条件下的反应烧结过程,并借助SEM,EDX和XRD对其微观结构和物相变化进行了分析。研究结果表明,活性α-Al2O3和纳米SiO2能够促进Al2O3-SiC-Si3N4复相材料的烧结,体积密度提高,显气孔率降低,从而提高了强度,在复相材料的合成过程中,发现在高温下烧成的试样内有Sialon相和Si2N2O相生成。  相似文献   

6.
综述了氮化硅及其复相陶瓷超塑性的研究进展论述了Si3N4及Sialon陶瓷的超塑性变形机理、微观特征和断裂特性在Si3N4和Sialon陶瓷的超塑性变形中,α→βSi3N4(β′Sialon)的相变以及βSi3N4(β′Sialon)的长大和晶界玻璃相的析晶引起的纤维强化,将影响Si3N4陶瓷超塑性的流变特性晶界玻璃相的重新分布使Si3N4的变形由牛顿流变向剪切增厚转变变形中的孔洞损伤和裂纹尖端的氧化引起裂纹的扩展,导致Si3N4的延伸率降低  相似文献   

7.
以MgSiN2为烧结助剂,在1 600~1 750°C下,热压烧结制备α/βSi3N4复相陶瓷,并研究其力学性能与相组成及显微结构之间的关系。结果表明,显微硬度随α-Si3N4质量分数的增加而增加,α-Si3N4质量分数为60%时,显微硬度达到最大,随α-Si3N4质量分数继续增加,显微硬度变化很小,约为23 GPa。随着β-Si3N4质量分数的增加,断裂韧性先增加后又下降,抗弯强度先增加而后变化不大。  相似文献   

8.
在Si3N4,Al2O3,AlN和Y2O3混合料常压烧结过程中,由于过程反应生成SiO,CO,N2等气相物质和由于Si3N4原料在高温常压下分解压高,从而常压烧结致密化过程始终伴随着一个失重的塑致密化过程.为了解决这一问题,作者研究了填料成分、烧结温度、烧结时间等工艺条件对Sialon陶瓷常压烧结密度的影响,分析了烧结过程的物理化学机制和致密化机制.4种填料分别为Si3N4,Si3N4+SiO2,Si3N4+Al2O3+AlN和Si3N4+Al2O3+AlN+BN.被烧料典型配方为Si3N465%~70%,Al2O320%~25%,AlN10%,另加6%Y2O3.当填料成分为70%Si3N4+24%Al2O3+3%AlN+3%BN时,制得了相对密度达99%,抗弯强度达612.2MPa的常压烧结Sialon陶瓷.研究结果表明对于通式为Si6-ZAlZOZN8-Z的Sialon陶瓷,当Z=2时,其最佳烧结温度为1750℃,烧结时间为40min;Sialon的烧结过程是1个多因素控制的瞬时液相烧结过程.  相似文献   

9.
以溶胶-凝胶法合成了Si-C-N非晶前驱体粉末,在不添加催化剂的条件下,通过高温还原氮化反应制备了α-Si3N。纳米线.用X射线衍射(XRD)、透射电镜(TEM)和扫描电镜(SEM)表征和分析了α-Si3N4纳米线.XRD分析表明,在所得产物中,除了未完全反应的非晶SiO2外,主要是α-SisNt,Si2N2O以及少量的β-SiC.TEM和SEM分析显示,合成的α-Si3N4纳米线直径为100~150nm,长几十μm,α-Si3N4纳米线的生长机制是气固(VS)生长机制。  相似文献   

10.
研究非均相沉淀-热还原法制备Fe包覆α-Si3N4复合粉末常压烧结界面反应特性,并进行热力学分析.研究结果表明:在1 600℃下烧结时,α-Si3N4部分转变为β-Si3N4,Fe相消失,转而生成FeSi化合物;在1700℃下烧结时,α-Si3N4基本转变为β-Si3N4,FeSi化合物消失,Fe相重新出现;在烧结过程中,FeSi化合物或Fe晶粒发生明显长大,呈圆球状分布在Si3N4晶粒之间,实验结果可通过热力学分析进行解释.  相似文献   

11.
12.
通过添加α-Si3N4晶须,利用流延成型和热压烧结技术制备含有定向排列颗粒、各向异性的Si3N4陶瓷。研究α-Si3N4相在流延膜及烧结块体中的分布状态,并通过XRD、SEM和力学性能对流延膜和烧结块体的各向异性进行表征。结果表明,1 550℃下烧结制备的块体T(与流延方向平行的平面)、N(与流延方向垂直的平面)、P(侧面)三个面的I(210)/I(102)值与等轴状α-Si3N4粉体的相应值比较,其中T面的值较大,N面和P面的值较小;在T面的显微结构中存在平行于流延方向排列的大颗粒;试样不同面的力学性能(断裂韧性和抗弯强度)中,T面最好,P面次之,N面最差;I(210)/I(102)值、显微结构、力学性能测试结果表明所制备的氮化硅陶瓷存在各向异性。  相似文献   

13.
Si3N4/BN nanocomposite powders with the microstructure of the micro-sized α-Si3N4 particles coated with nano-sized BN particles were synthesized via the chemical reaction boric acid,urea,and α- Si3N4 powder in a hydrogen gas.The results of XRD,TEM,and selected area electron diffraction showed that amorphous BN and a little amount of turbostratic BN(t-BN) were coated on Si3N4 particles as the second phase after reaction at 1100℃.After re-heating the composite powders at 1450℃ in a nitrogen gas,the amorphous and turbostratic BN is transformed into h-BN.These nanocomposite powders can be used to prepare Si3N4/BN ceramic composites by hot-pressing at 1800℃,which have perfect machinability and can be drilled with normal metal tools.  相似文献   

14.
Using coal fly ash slurry samples supplemented with different amounts of Al_2O_3,we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach,which is a popular method suitable for industrial application.The microstructure,phase composition,and compressive strength of the sintered samples were investigated.Mullite was identified in all of the prepared materials by X-ray diffraction analysis.The microstructure and compressive strength were strongly influenced by the content of Al_2O_3.As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40,the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased.A further increase in the Al_2O_3 content resulted in a decrease in the compressive strength of the sintered samples.The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

15.
The state and formation mechanism ofα-Si3N4 in Fe–Si3N4 prepared by flash combustion were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results indicate thatα-Si3N4 crystals exist only in the Fe–Si3N4 dense areas. When FeSi75 particles react with N2, which generates substantial heat, a large number of Si solid particles evaporate. The prod-uct between Si gas and N2 is a mixture ofα-Si3N4 andβ-Si3N4. At the later stage of the flash combustion process,α-Si3N4 crystals dissolve and reprecipitate asβ-Si3N4 and theβ-Si3N4 crystals grow outward from the dense areas in the product pool. As the temperature decreases, the α-Si3N4 crystals cool before transforming into β-Si3N4 crystals in the dense areas of Fe–Si3N4. The phase composition of flash-combustion-synthesized Fe–Si3N4 is controllable through manipulation of the gas-phase reaction in the early stage and theα→βtrans-formation in the later stage.  相似文献   

16.
Using coal fly ash slurry samples supplemented with different amounts of Al2O3, we fabricated mullite-based porous ceramics via a dipping-polymer-replica approach, which is a popular method suitable for industrial application. The microstructure, phase composition, and compressive strength of the sintered samples were investigated. Mullite was identified in all of the prepared materials by X-ray diffraction analysis. The microstructure and compressive strength were strongly influenced by the content of Al2O3. As the Al/Si mole ratio in the starting materials was increased from 0.84 to 2.40, the amount of amorphous phases in the sintered microstructure decreased and the compressive strength of the sintered samples increased. A further increase in the Al2O3 content resulted in a decrease in the compressive strength of the sintered samples. The mullite-based porous ceramic with an Al/Si molar ratio of 2.40 exhibited the highest compressive strength and the greatest shrinkage among the investigated samples prepared using coal fly ash as the main starting material.  相似文献   

17.
以粉煤灰和炭黑为原料,采用碳热还原氮化法在1 350~1 550℃下保温6 h合成出不同组成的Sialon环境材料.研究了合成温度对材料相组成的影响,观察了其显微结构,并分析了粉煤灰的碳热还原氮化过程.研究结果表明:合成温度对材料的相组成影响显著;提高合成温度有利于莫来石的分解和Sialon的生成,通过控制加热温度可以合成不同组成的Sialon材料;1 350~1 400℃,1 450~1 500℃和1 550℃保温6 h可以分别合成(O′+β)-Sialon/莫来石、(X+β)-Sialon/刚玉和β-Sialon材料;在1 550℃下合成β-Sialon的平均粒径约为2~3μm.粉煤灰的碳...  相似文献   

18.
以棕刚玉,Al,Si,Al2O3为原料,利用一步工艺合成了Sialon/刚玉复合材料·研究了Si3N4/AlN复合添加剂对复合材料组织、性能以及复合材料中N含量的影响·研究结果表明:材料中N含量随着Si3N4/AlN复合添加剂的增加而增加,材料的强度随着Si3N4/AlN复合添加剂的增加呈现出先升高后降低的变化趋势;当氮化温度超过1330℃,氮化时间超过8h后,添加Si3N4/AlN的材料中N含量基本上达到饱和值,添加Si3N4/AlN可以降低Sialon相的合成温度;1230~1280℃是一个重要的前期氮化温度,添加Si3N4/AlN的材料在该温度可完成整个氮化反应的94 2%,早期对Al,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号