首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
论述了螺旋槽管管内外单相流体传热研究的试验结果,并将试验数据按流动参数、物性参数和几何参数采用无量纲准则数进行整理.给出了在雷诺数Rei=104~105范围内管内无量纲换热系数Nui的关联式,和在Re.=3×103~6×104及Re.=3.3×103~105范围内气流横掠螺旋槽管错列和顺列管束的管外无量纲换热系数Nu.的关联式,该关联式可以作为螺旋槽管换热器的设计依据.介绍了螺旋槽管作为空气预热器在电站煤粉锅炉中的广泛应用,给出了几个应用螺旋槽管空气预热器解决锅炉具体问题的实例,表明了螺旋槽管空气预热器的显著优越性.  相似文献   

2.
对一种大直径三维内肋管进行了管内对流换热实验研究,实验结果显示,与光滑管相比,其强化换热因子hl/hs在1.65~1.70之间,而压降比ΔPl/ΔPs在1.65~1.89之间;基于对换热和管壁温度影响因素的分析,提出了一种新型气-气换热器,并研究和提出了该换热器的设计计算方法;通过工程实例表明,该换热器管壁温不仅比光滑管换热器明显提高,而且换热能力提高约20%;另外,与其它类型的换热器比较,具有较高的综合性能。  相似文献   

3.
对汽车排烟余热回收装置的双斜向流线型内肋换热管进行了数值模拟研究,主要分析了内肋的结构特性参数对换热性能的影响。结果表明,流线型内肋在肋长、肋倾角、肋高度和肋间距上存在最优值,分别为38mm,45°,2.5mm和60mm。当Re=1.2×104~5×104时,与同条件下普通圆管相比,努塞尔数Nu可增加54.5%~90.7%,摩擦阻力系数f增加157.6%~204.2%;同时,双斜向流线型内肋管内场协同角从90°减小到80°,换热效果显著提升。运用场协同理论分析,发现管内场协同角在每一个内肋附近都出现骤减现象,并体现其为换热效果增强的主要原因。  相似文献   

4.
为了得到非清洁水换热管内振荡流动的除垢性能,研究了有无振荡干预下非清洁水源热泵换热器管内的流动和传热情况。建立恒热流条件下圆管内振荡流动的物理模型,针对不同工况进行数值模拟。模拟结果显示,振荡流动能够明显增大流体对于壁面的剪切力,在5Hz和10Hz情况下能够增大流体和壁面间的平均表面换热系数,1Hz情况下平均表面换热系数变化不明显。在1Hz实验工况下搭建了试验台进行实验研究,实验结果表明,实验工况条件下,振荡对于换热器管内表面换热系数的影响较小,但是剪切力的增大造成部分污垢沉积物脱落,减小了污垢热阻从而使换热器的传热系数增加了22.2%,因此振荡可以作为换热管内除垢的一种有效方式。  相似文献   

5.
为了研究人工冻结过程中HDPE同轴管换热器的传热性能,在建立同轴管换热器物理模型的基础上,选择V.C.Mei传热模型对其进行数值分析,并利用ANSYS fluent模块进行人工冻土中温度场变化情况的数值模拟;同时利用自行设计的人工模拟土体冻结试验装置和HDPE同轴管换热器,对长春地区的原位取样黏土进行236 h的人工冻结试验,得到地下温度场的变化规律,与模拟数据进行分析比较,表明理论分析与实验结果吻合度较好。研究结果表明:人工冻结236 h后,土体以下5,30和55 cm深度处,冻结圈分别扩展到170,200和208 mm,HDPE同轴管换热器传热效率满足土体冻结要求,可以适用于人工冻结土体。  相似文献   

6.
实验研究了安装有平板及45°平板扰流内构件的管式换热器传热与压降特性,结果表明:管内插入平板和45°平板扰流内构件时,换热器传热性能和压降特性随扰流内构件组数NRe的增加而增大;当Re ≥ 2.6×104时,换热器压降增加比较显著;当N>6时,平板内构件换热器传热性能强化稍优于45°平板内构件换热器,但是压降明显较大;两种内构件组数不宜超过9组。在实验研究范围内,平板和45°平板内构件换热器传热性能分别是空管换热器的1.66~3.47倍和1.67~3.38倍,压降分别是空管换热器的6.25~29.57倍和3.61~10.77倍。Re在1.9×104左右时,平板和45°平板综合性能评价因子达到最大,分别约为1.24和1.57,说明45°平板内构件换热器综合性能优于平板内构件换热器。随后进一步采用数值模拟方法对换热器的传热和流动特性进行了模拟,结果表明:有角度平板可以使流场旋转产生二次流动,强化了传热,降低了换热器压降的增幅。因此,将有角度的内构件插入管式换热器中可有效增加换热器的综合传热性能。  相似文献   

7.
根据地下连续墙内埋管换热器传热模型及埋管内流体温度场提出了地下连续墙内埋管换热器换热能力和出水温度的计算方法,并基于正交分析给出了上部建筑负荷最大时地下换热器的换热量及出水温度最高值的回归公式.在此基础上,根据出水温度最高值、单组埋管长度以及地下连续墙单幅宽度等限制条件提出了地下连续墙内埋管换热器的优化设计方法,并以上海自然博物馆地下连续墙内埋管为例进行了计算.分析表明,该优化设计方法计算简便,容易为工程设计人员所接受.  相似文献   

8.
中空纤维膜换热器传热传质特性的实验和理论研究   总被引:1,自引:0,他引:1  
将直接接触式膜蒸馏的概念和操作过程引入到换热器的设计中,提出了一种既有传热又有传质的新型中空纤维膜换热器.以水为工作介质,对采用聚偏氟乙烯膜(PVDF)的中空纤维膜换热器进行了初步的传热、传质实验研究,考察了逆流布置下溶液的进口温度和流量对换热器的传热、传质效果的影响,并构建了同样尺寸的铜列管式换热器进行对比研究.实验和理论结果表明,虽然膜材料本身的热传导系数较低,但膜换热器冷热流体之间接触面积比传统换热器大,特别是水蒸气从热侧向冷侧进行质量传递的同时还进行潜热传递,因此膜换热器的换热量可维持在较高水平,流体的进出口温差也有大幅度提高.初步研究结果显示,在实验的工况范围内,在低流速、小流量下,膜换热器的传热性能优于金属换热器,但随着管内流速的增加,膜换热器的沿程阻力将远大于金属换热器,因此膜换热器适合于在低流速的情况下使用.  相似文献   

9.
陕北红碱淖流域水量变化及其影响因素定量分析   总被引:3,自引:0,他引:3  
通过概化计算得到陕北红碱淖流域1998~2004年的水量补给和消耗,建立了流域水量平衡模型,使用Mat-lab软件建立了多因素线性回归模型,定量分析了红碱淖流域水量失衡的影响因素.研究表明:1998~2004年红碱淖流域年平均补给水量为1.06×108m3,年平均耗水量为1.69×108m3,年平均水量净消耗为0.63×108m3.自然因素是影响红碱淖流域水量失衡的主要因素.降水量每变化1 mm,对应于水量补给变化约为1.01×104 m3,流域年平均温度波动1℃,导致的水量变化约为1.24×104m3,年平均风速波动1 m/s,造成水量变化约为1.34×104m3.流域内农业灌溉是人为因素方面的主要耗水部分,年均约为0.45×108m3.由于自然因素的不可控性以及红碱淖流域社会经济的发展,要缓解流域水量失衡状况,必须采取有效措施减少人为因素造成的流域耗水量.  相似文献   

10.
腐乳粗放式的手工生产致使成品中检出的微生物种类繁多,影响了腐乳的质量.本实验采用60Co-γ射线对腐乳进行辐照处理,研究后酵时间和温度对其细菌总数、霉菌总数和大肠菌群数的影响.结果表明:后酵120,d的腐乳经3,kGy辐照3,h后,在25,℃下储藏60,d,细菌总数为2.09×104,g-1,霉菌总数为1.94×104,g-1,且细菌总数和霉菌总数比未辐照腐乳的分别减少了26.77%~27.12%、25.11%~29.06%;证明辐照处理可作为控制腐乳中微生物指标的措施之一,有助于保持腐乳的品质.  相似文献   

11.
针对传统弓形折流板换热器壳侧压降大的问题,提出交错百叶折流板管壳式换热器,通过三维数值模拟,对不同周期下的交错百叶折流板管壳式换热器性能进行研究,获得壳侧流场、温度场的换热和阻力性能.结果表明:与传统弓形折流板换热器相比,交错百叶折流板管壳式换热器壳侧形成了较好的螺旋状流动,温度场分布均匀;在相同的质量流量下,交错百叶折流板管壳式换热器壳侧压降显著降低,单位压降的传热系数最高提高110.51%,综合性能大幅提高.  相似文献   

12.
为了研究换热器螺旋管的冷凝传热性能,对R22制冷剂使用VOF模型在螺旋直径为300mm、螺距为19.52mm、管道直径为9.52mm的换热器螺旋管进行了数值模拟,分析了换热器螺旋管的流场分布特性,研究了流体流速和饱和温度对螺旋管内换热性能的影响。通过实验研究了不同参数对螺旋管内换热性能的影响,对数值模拟的准确性进行验证。实验结果表明,在不同流体流速时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-11%,在不同饱和温度时冷凝换热系数的模拟数据与实验数据之间的相对误差为3%-8%,说明数值模拟方法和结果是合理的。该研究为螺旋管换热器的设计优化以及空调热水器一体机的节能损耗给予了一些参考。  相似文献   

13.
煤粉加压气化炉膜式螺旋管和蛇形管对流传热特性研究   总被引:2,自引:0,他引:2  
对煤粉加压气化炉对流段的不同换热结构进行了换热特性的实验研究,其中换热结构包括膜式螺旋管环形通道换热器和膜式蛇形管平行通道换热器,实验气体为单质气体N2、He及其混合气,实验压力为0.5~3.5MPa.为此,针对不同冲刷形式、不同气体和压力提出了换热器换热系数及其扩展的计算方法,同时给出了典型冲刷形式的对流换热的关联式和适用条件.实验研究表明:冲刷形式对换热系数有很大影响,单通道和多通道换热系数与换热面积之间呈加权平均的关系;在相同换热条件下,膜式螺旋管环形通道换热器的换热系数高于膜式蛇形管平行通道换热器.  相似文献   

14.
水平管降膜换热器具有热质传递效率高、阻力小、结构简单等优点,被广泛应用于化工等传统领域及能源利用的节能减排领域。降膜换热器内部发生复杂的流动及传热传质相互耦合过程。介绍了实验及模拟研究手段的进展,综述了不同操作参数(气体温度、流向及流量,溶液流量、温度及浓度,内部媒介流量及温度等)与结构参数(管径、管间距等)对水平管降膜管间流型、液膜厚度与润湿性等流动特性的影响规律,以及对蒸发传热特性、吸收传热传质特性等换热器性能的影响规律,包括整体性能和局部微细特征,为水平管降膜换热器的性能优化提供理论支撑。指出在不同气流特征以及多因素相互作用下多维度的局部流动与传热传质性能的耦合影响规律以及强化换热手段会是水平管降膜换热器未来研究的重点方向。  相似文献   

15.
水蒸汽在水平二维微肋管内的凝结换热   总被引:1,自引:0,他引:1  
探讨了微肋高度对水平二维微肋管内凝结换热和流动阻力的影响.采用水蒸汽为凝结介质,进行了三种不同肋高度的管内凝结换热实验.结果表明,二维微肋管内凝结的平均换热系数α随肋高的增加明显增大.和光管比较,α增加28%~210%,这时阻力的增加仅为4%~53%.  相似文献   

16.
对S/d0=2.0,S/d0=2.5和S/d0=3.0的同轴环形通道螺旋管换热器分别进行了流动特性及阻力特性的实验研究,并和圆形管道的理论值进行比较。得出流体流速、压力、流量及同轴环形通道的几何参数等对同轴环形通道流动特性的影响。结果表明:在环隙宽度S和螺旋管外径d0相同的条件下,随着雷诺数Re的增加,环形通道的进口阻力系数ξin、出口阻力系数ξout和总阻力系数ξz逐渐减小并逐渐趋于一定值;外圈环形通道的ξin、ξout、ξz均比中圈和内圈环形通道的大,但中圈和内圈环形通道的ξin、ξout、ξz相等;相同雷诺数条件下,S越小,流体在环形通道流动时,流体的进出口压力降ΔP就越大。  相似文献   

17.
横掠周期性密集管束流动换热的数值模拟   总被引:1,自引:1,他引:0  
在较宽的雷诺数范围内,使用CFD软件、SIMPLE算法和QUICK格式,对流体横掠不同管间距的顺排密集型管束,在周期性充分发展段的流动换热进行了数值模拟.选用几何间距与经验公式中相同的管束模型进行计算,将数值结果与前人已存在的经验公式和实验结果进行比较,确保数值模拟方法的正确性.通过分析3种不同计算模型的流场、换热系数等,验证了针对高度密集管束采用周期性边界条件和对称性边界条件的合理性.将其与大间距顺排管束的流动换热特性进行对比,结果表明,密集管束换热系数最高可达大间距管束换热系数的3倍,可为工业上换热器管排布置方式提供参考.  相似文献   

18.
螺旋折流板波槽管换热器换热与阻力实验研究   总被引:1,自引:0,他引:1  
以水为工质,对螺旋折流板波槽管换热器、螺旋折流板光管换热器及传统弓形折流板光管换热器进行了壳程和管程的传热及阻力对比实验研究.结果表明,相比弓形折流板光管换热器,螺旋折流板光管换热器总传热系数和壳程换热系数分别提高50%~80%和90%,壳程阻力减少15%~20%;螺旋折流板与波槽管结合使用,换热能力进一步加强,总传热系数是弓形折流板光管换热器的2.01~2.11倍,是螺旋折流板光管换热器的1.15~1.6倍.  相似文献   

19.
孙琪 《科学技术与工程》2012,12(24):6229-6231,6240
为提高管壳式换热器设计效率,以VB程序语言为平台,基于换热器壳侧传热性能指标设计开发了管壳式换热器计算软件。用户通过使用软件既可设计出满足给定换热量要求、规定压降条件的一系列国家标准弓行板式换热器结构;又可设计新型螺旋折流板换热器。软件计算准确性较高,可供工程设计及类似软件开发借鉴。  相似文献   

20.
针对太阳能利用过程中的蓄热储能问题及螺旋槽管换热器的优点,将螺旋槽管引入太阳能相变蓄热器中,并对蓄热器的蓄热过程进行了数值模拟。首先以光滑管蓄热器为例实验验证了该模拟方法和所用模型的可靠性,进而以螺旋槽管为水流管道、相变材料为蓄热介质,利用Gambit 建立三维蓄热器模型,应用ICEM对几何模型进行网格划分,运用流体计算软件Fluent模拟计算螺旋槽管和光滑管相变蓄热器的蓄热过程,考察螺旋槽管的强化传热效果。模拟计算螺旋槽管蓄热器不同槽纹节距和槽深等结构参数对蓄热器蓄热过程的影响,并对其影响规律进行了分析。结果表明,螺旋槽管代替光滑管用于太阳能相变蓄热器,可有效提高相变蓄热过程中的对流换热强度和传热能力,缩短蓄热时间,在模拟范围内,得到的最佳螺旋槽管结构参数为节距p=7 mm,槽深e=0.4 mm。螺旋槽管传热性能良好,对其深入研究有望进一步改进相变蓄热器的设计方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号