首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner   总被引:1,自引:0,他引:1  
R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.  相似文献   

2.
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts   总被引:1,自引:0,他引:1  
Homeostasis of self-renewing small intestinal crypts results from neutral competition between Lgr5 stem cells, which are small cycling cells located at crypt bottoms. Lgr5 stem cells are interspersed between terminally differentiated Paneth cells that are known to produce bactericidal products such as lysozyme and cryptdins/defensins. Single Lgr5-expressing stem cells can be cultured to form long-lived, self-organizing crypt-villus organoids in the absence of non-epithelial niche cells. Here we find a close physical association of Lgr5 stem cells with Paneth cells in mice, both in vivo and in vitro. CD24(+) Paneth cells express EGF, TGF-α, Wnt3 and the Notch ligand Dll4, all essential signals for stem-cell maintenance in culture. Co-culturing of sorted stem cells with Paneth cells markedly improves organoid formation. This Paneth cell requirement can be substituted by a pulse of exogenous Wnt. Genetic removal of Paneth cells in vivo results in the concomitant loss of Lgr5 stem cells. In colon crypts, CD24(+) cells residing between Lgr5 stem cells may represent the Paneth cell equivalents. We conclude that Lgr5 stem cells compete for essential niche signals provided by a specialized daughter cell, the Paneth cell.  相似文献   

3.
The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.  相似文献   

4.
Wnt signalling in stem cells and cancer   总被引:3,自引:0,他引:3  
Reya T  Clevers H 《Nature》2005,434(7035):843-850
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.  相似文献   

5.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

6.
A role for Wnt signalling in self-renewal of haematopoietic stem cells   总被引:92,自引:0,他引:92  
Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated beta-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.  相似文献   

7.
The intestinal epithelium is the most rapidly self-renewing tissue in adult mammals. It is currently believed that four to six crypt stem cells reside at the +4 position immediately above the Paneth cells in the small intestine; colon stem cells remain undefined. Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5, also known as Gpr49) was selected from a panel of intestinal Wnt target genes for its restricted crypt expression. Here, using two knock-in alleles, we reveal exclusive expression of Lgr5 in cycling columnar cells at the crypt base. In addition, Lgr5 was expressed in rare cells in several other tissues. Using an inducible Cre knock-in allele and the Rosa26-lacZ reporter strain, lineage-tracing experiments were performed in adult mice. The Lgr5-positive crypt base columnar cell generated all epithelial lineages over a 60-day period, suggesting that it represents the stem cell of the small intestine and colon. The expression pattern of Lgr5 suggests that it marks stem cells in multiple adult tissues and cancers.  相似文献   

8.
Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.  相似文献   

9.
目的 探究过表达 miR-143-3p 对甲状腺癌( thyroid cancer,TC) 细胞的影响及其作用机制。 方法 Real-time PCR 分析正常甲状腺上皮细胞和不同 TC 细胞中 miR-143-3p 的表达。 Targetscan 网站和双荧光素酶报告系统验证miR-143-3p 和 TGIF2 3′UTR 的靶向关系;Real-time PCR 检测 miR-143-3p 和 TGIF2 mRNA 的过表达效率;过表达成功后,将 CAL-62 细胞分为对照组、miR-143-3p mimic 组、pcDNA-TGIF2 组和 miR-143-3p+TGIF2 组,ELISA 检测细胞上清液中诱导型一氧化氮合酶( iNOS) 、白细胞介素( IL) -1β 和 IL-6 的含量;试剂盒检测超氧化物歧化酶( SOD) 水平,免疫荧光检测活性氧( ROS)产生;显微观察干细胞成球,Western blot 检测 TGIF2、p-P65、富含亮氨酸重复序列的 G 蛋白偶联受体5 ( LGR5) 和 八聚体结合蛋白4 ( OCT4 ) 蛋 白 表 达。体内构建裸鼠移植瘤, 检测过表达miR-143-3p 对肿瘤生长的影响。 结果 miR-143-3p 在 TC 细胞中的表达明显低于正常甲状腺上皮细胞( P< 0. 05) 。Targetscan 网站和双荧光素酶报告系统证实 miR-143-3p 与 TGIF2 存在靶向关系。 miR-143-3p mimic 组 miR-143-3p的表达上调( P<0. 05) ,TGIF2 mRNA 和蛋白表达下调( P<0. 05) ,iNOS、IL-1β 和 IL-6 含量明显降低( P<0. 05) ,抗氧化能力显著下降 ( P < 0. 05) , 干 细 胞 成 球 能 力 降 低 ( P < 0. 05) , p-P65、 LGR5 和 OCT4 的蛋白表达均显著下调( P<0. 05) 。 pcDNA-TGIF2 组的结果相反,过表达 miR-143-3p 能显著抑制 pcDNA-TGIF2 的促癌作用。 裸鼠移植瘤模型表明过表达 miR-143-3p 能够减小肿瘤的质量和体积,下调瘤组织中 TGIF2 和 OCT4 的表达( P<0. 05) 。 结论过表达 miR-143-3p 能够通过下调 TGIF2 的表达抑制 TC 细胞促炎因子水平、抗氧化能力和干细胞样特性,并抑制裸鼠肿瘤的形成。  相似文献   

10.
11.
Beachy PA  Karhadkar SS  Berman DM 《Nature》2004,432(7015):324-331
Cancer is increasingly being viewed as a stem cell disease, both in its propagation by a minority of cells with stem-cell-like properties and in its possible derivation from normal tissue stem cells. But stem cell activity is tightly controlled, raising the question of how normal regulation might be subverted in carcinogenesis. The long-known association between cancer and chronic tissue injury, and the more recently appreciated roles of Hedgehog and Wnt signalling pathways in tissue regeneration, stem cell renewal and cancer growth together suggest that carcinogenesis proceeds by misappropriating homeostatic mechanisms that govern tissue repair and stem cell self-renewal.  相似文献   

12.
13.
14.
Davidson G  Wu W  Shen J  Bilic J  Fenger U  Stannek P  Glinka A  Niehrs C 《Nature》2005,438(7069):867-872
Signalling by Wnt proteins (Wingless in Drosophila) has diverse roles during embryonic development and in adults, and is implicated in human diseases, including cancer. LDL-receptor-related proteins 5 and 6 (LRP5 and LRP6; Arrow in Drosophila) are key receptors required for transmission of Wnt/beta-catenin signalling in metazoa. Although the role of these receptors in Wnt signalling is well established, their coupling with the cytoplasmic signalling apparatus remains poorly defined. Using a protein modification screen for regulators of LRP6, we describe the identification of Xenopus Casein kinase 1 gamma (CK1gamma), a membrane-bound member of the CK1 family. Gain-of-function and loss-of-function experiments show that CK1gamma is both necessary and sufficient to transduce LRP6 signalling in vertebrates and Drosophila cells. In Xenopus embryos, CK1gamma is required during anterio-posterior patterning to promote posteriorizing Wnt/beta-catenin signalling. CK1gamma is associated with LRP6, which has multiple, modular CK1 phosphorylation sites. Wnt treatment induces the rapid CK1gamma-mediated phosphorylation of these sites within LRP6, which, in turn, promotes the recruitment of the scaffold protein Axin. Our results reveal an evolutionarily conserved mechanism that couples Wnt receptor activation to the cytoplasmic signal transduction apparatus.  相似文献   

15.
Shin K  Lee J  Guo N  Kim J  Lim A  Qu L  Mysorekar IU  Beachy PA 《Nature》2011,472(7341):110-114
Epithelial integrity in metazoan organs is maintained through the regulated proliferation and differentiation of organ-specific stem and progenitor cells. Although the epithelia of organs such as the intestine regenerate constantly and thus remain continuously proliferative, other organs, such as the mammalian urinary bladder, shift from near-quiescence to a highly proliferative state in response to epithelial injury. The cellular and molecular mechanisms underlying this injury-induced mode of regenerative response are poorly defined. Here we show in mice that the proliferative response to bacterial infection or chemical injury within the bladder is regulated by signal feedback between basal cells of the urothelium and the stromal cells that underlie them. We demonstrate that these basal cells include stem cells capable of regenerating all cell types within the urothelium, and are marked by expression of the secreted protein signal Sonic hedgehog (Shh). On injury, Shh expression in these basal cells increases and elicits increased stromal expression of Wnt protein signals, which in turn stimulate the proliferation of both urothelial and stromal cells. The heightened activity of this signal feedback circuit and the associated increase in cell proliferation appear to be required for restoration of urothelial function and, in the case of bacterial injury, may help clear and prevent further spread of infection. Our findings provide a conceptual framework for injury-induced epithelial regeneration in endodermal organs, and may provide a basis for understanding the roles of signalling pathways in cancer growth and metastasis.  相似文献   

16.
R Kingston  E J Jenkinson  J J Owen 《Nature》1985,317(6040):811-813
There is much interest in early T-cell development, particularly in relation to the diversification of the T-cell receptor repertoire and the elucidation of the lineage relationships between T-cell populations in the thymus and peripheral lymphoid organs. However, the requirements for the growth of the earliest thymic T-cell precursor in 13-14-day mouse embryo thymus in isolation from the thymic environment are unknown. Proliferation and maturation of such cells are not sustained either in the presence of monolayers of thymic stromal cells or by the addition of interleukin-2 (IL-2), despite the expression of receptors for this growth factor on a proportion of thymocytes displaying the immature Thy 1+ Lyt-2-L3T4- phenotype in the embryonic thymus. In contrast, when maintained within the intact thymic environment in organ cultures, 13-14-day thymic stem cells do show a pattern of surface marker and functional development similar to that seen in vivo, suggesting that short-range growth signals, perhaps necessitating direct contact with organized epithelial cells, are required. We have shown, by exploiting the selective toxicity of deoxyguanosine (dGuo) for early T cells, that this organ culture system can be manipulated to produce alymphoid lobes that can be recolonized from a source of precursors in a transfilter system. We now show that recolonization of alymphoid lobes can also be achieved by association with T-cell precursors in hanging drops, allowing recolonization by exposure to defined numbers of precursors, including a single micromanipulated stem cell. Analysis of T-cell marker expression in these cultures shows that a single thymic stem cell can produce progeny of distinct phenotypes, suggesting that these marker-defined populations are not derived from separate prethymic precursors, but arise within the thymus.  相似文献   

17.
The Hedgehog and Wnt signalling pathways in cancer   总被引:53,自引:0,他引:53  
Taipale J  Beachy PA 《Nature》2001,411(6835):349-354
  相似文献   

18.
The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.  相似文献   

19.
对近年来视黄素受体介导视黄素抗癌作用机理的研究进展作一综述,主要有:1)视黄素受体;2)视黄素受体与细胞生长;3)视黄素受体与孤生受体的的相关性;4)视黄素受体对AP-1活性的抑制作用;5)视黄素受体介导的信号转导途径。通过研究,对于探讨视黄素受体的功能、阐明视黄素的抗癌机理、合成更多的受体选择性视黄素具有重要的现实意义。  相似文献   

20.
naked cuticle encodes an inducible antagonist of Wnt signalling   总被引:1,自引:0,他引:1  
Zeng W  Wharton KA  Mack JA  Wang K  Gadbaw M  Suyama K  Klein PS  Scott MP 《Nature》2000,403(6771):789-795
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号