首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Due to the fact that chronic inflammation as well as tumorigenesis in the gut is crucially impacted by the fate of intestinal epithelial cells, our article provides a comprehensive overview of the composition, function, regulation and homeostasis of the gut epithelium. In particular, we focus on those aspects which were found to be altered in the context of inflammatory bowel diseases or colorectal cancer and also discuss potential molecular targets for a disease-specific therapeutic intervention.  相似文献   

3.
4.
GPR43 is a receptor for short-chain fatty acids. Preliminary data suggest a putative role for GPR43 in regulating systemic health via processes including inflammation, carcinogenesis, gastrointestinal function, and adipogenesis. GPR43 is involved in secretion of gastrointestinal peptides, which regulate appetite and gastrointestinal motility. This suggests GPR43 may have a role in weight control. Moreover, GPR43 regulates plasma lipid profile and inflammatory processes, which further indicates that GPR43 could have the ability to modulate the etiology and pathogenesis of metabolic diseases such as obesity, type 2 diabetes mellitus, and cardiovascular disease. This review summarizes the current evidence regarding the ability of GPR43 to mediate both systemic and tissue specific functions and how GPR43 may be modulated in the treatment of metabolic disease.  相似文献   

5.
Beside its role as a neurotransmitter in the central nervous system, serotonin appears to be a central physiologic mediator of many gastrointestinal (GI) functions and a mediator of the brain-gut connection. By acting directly and via modulation of the enteric nervous system, serotonin has numerous effects on the GI tract. The main gut disturbances in which serotonin is involved are acute chemotherapy-induced nausea and vomiting, carcinoid syndrome and irritable bowel syndrome. Serotonin also has mitogenic properties. Platelet-derived serotonin is involved in liver regeneration after partial hepatectomy. In diseased liver, serotonin may play a crucial role in the progression of hepatic fibrosis and the pathogenesis of steatohepatitis. Better understanding of the role of the serotonin receptor subtypes and serotonin mechanisms of action in the liver and gut may open new therapeutic strategies in hepato-gastrointestinal diseases. Received 15 August 2007; received after revision 1 November 2007; accepted 5 November 2007  相似文献   

6.
Trefoil factors   总被引:4,自引:0,他引:4  
Trefoil Factor 1 (TFF1), the first member of the trefoil factor family, is normally expressed in the stomach mucosa. Ectopic expression is also observed in various human pathological conditions, notably in numerous carcinomas and gastrointestinal acute inflammatory disorders. In vivo experimental data using TFF1-deficient mice highlight the pleiotropic functions of TFF1: (i) it is a gastric tumor suppressor gene involved in gastric ontogenesis and homeostasis; (ii) it protects gut mucosa from aggression; (iii) it participates in folding secreted proteins inside the endoplasmic reticulum. At the cellular level, it limits cell proliferation and apoptosis, and favors cell differentiation. Collectively, these data suggest that TFF1 may provide an alternative pharmacological tool for the prevention and treatment of human gastrointestinal diseases.  相似文献   

7.
The composition of the gut microbiota is in constant flow under the influence of factors such as the diet, ingested drugs, the intestinal mucosa, the immune system, and the microbiota itself. Natural variations in the gut microbiota can deteriorate to a state of dysbiosis when stress conditions rapidly decrease microbial diversity and promote the expansion of specific bacterial taxa. The mechanisms underlying intestinal dysbiosis often remain unclear given that combinations of natural variations and stress factors mediate cascades of destabilizing events. Oxidative stress, bacteriophages induction and the secretion of bacterial toxins can trigger rapid shifts among intestinal microbial groups thereby yielding dysbiosis. A multitude of diseases including inflammatory bowel diseases but also metabolic disorders such as obesity and diabetes type II are associated with intestinal dysbiosis. The characterization of the changes leading to intestinal dysbiosis and the identification of the microbial taxa contributing to pathological effects are essential prerequisites to better understand the impact of the microbiota on health and disease.  相似文献   

8.
Clostridium difficile causes nosocomial/antibiotic-associated diarrhoea and pseudomembranous colitis. The major virulence factors are toxin A and toxin B (TcdB), which inactivate GTPases by monoglucosylation, leading to cytopathic (cytoskeleton alteration, cell rounding) and cytotoxic effects (cell-cycle arrest, apoptosis). C. difficile toxins breaching the intestinal epithelial barrier can act on underlying cells, enterocytes, colonocytes, and enteric neurons, as described in vitro and in vivo, but until now no data have been available on enteric glial cell (EGC) susceptibility. EGCs are crucial for regulating the enteric nervous system, gut homeostasis, the immune and inflammatory responses, and digestive and extradigestive diseases. Therefore, we evaluated the effects of C. difficile TcdB in EGCs. Rat-transformed EGCs were treated with TcdB at 0.1–10 ng/ml for 1.5–48 h, and several parameters were analysed. TcdB induces the following in EGCs: (1) early cell rounding with Rac1 glucosylation; (2) early G2/M cell-cycle arrest by cyclin B1/Cdc2 complex inactivation caused by p27 upregulation, the downregulation of cyclin B1 and Cdc2 phosphorylated at Thr161 and Tyr15; and (3) apoptosis by a caspase-dependent but mitochondria-independent pathway. Most importantly, the stimulation of EGCs with TNF-α plus IFN-γ before, concomitantly or after TcdB treatment strongly increased TcdB-induced apoptosis. Furthermore, EGCs that survived the cytotoxic effect of TcdB did not recover completely and showed not only persistent Rac1 glucosylation, cell-cycle arrest and low apoptosis but also increased production of glial cell-derived neurotrophic factor, suggesting self-rescuing mechanisms. In conclusion, the high susceptibility of EGCs to TcdB in vitro, the increased sensitivity to inflammatory cytokines related to apoptosis and the persistence of altered functions in surviving cells suggest an important in vivo role of EGCs in the pathogenesis of C. difficile infection.  相似文献   

9.
The gut microbiota is essential to health and has recently become a target for live bacterial cell biotherapies for various chronic diseases including metabolic syndrome, diabetes, obesity and neurodegenerative disease. Probiotic biotherapies are known to create a healthy gut environment by balancing bacterial populations and promoting their favorable metabolic action. The microbiota and its respective metabolites communicate to the host through a series of biochemical and functional links thereby affecting host homeostasis and health. In particular, the gastrointestinal tract communicates with the central nervous system through the gut–brain axis to support neuronal development and maintenance while gut dysbiosis manifests in neurological disease. There are three basic mechanisms that mediate the communication between the gut and the brain: direct neuronal communication, endocrine signaling mediators and the immune system. Together, these systems create a highly integrated molecular communication network that link systemic imbalances with the development of neurodegeneration including insulin regulation, fat metabolism, oxidative markers and immune signaling. Age is a common factor in the development of neurodegenerative disease and probiotics prevent many harmful effects of aging such as decreased neurotransmitter levels, chronic inflammation, oxidative stress and apoptosis—all factors that are proven aggravators of neurodegenerative disease. Indeed patients with Parkinson’s and Alzheimer’s diseases have a high rate of gastrointestinal comorbidities and it has be proposed by some the management of the gut microbiota may prevent or alleviate the symptoms of these chronic diseases.  相似文献   

10.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   

11.
Intestinal epithelial barrier and mucosal immunity   总被引:12,自引:0,他引:12  
The innate immune system plays a crucial role in maintaining the integrity of the intestine and protecting the host against a vast number of potential microbial pathogens from resident and transient gut microflora. Mucosal epithelial cells and Paneth cells produce a variety of antimicrobial peptides (defensins, cathelicidins, crytdinrelated sequence peptides, bactericidal/permeabilityincreasing protein, chemokine CCL20) and bacteriolytic enzymes (lysozyme, group IIA phospholipase A2) that protect mucosal surfaces and crypts containing intestinal stem cells against invading microbes. Many of the intestinal antimicrobial molecules have additional roles of attracting leukocytes, alarming the adaptive immune system or neutralizing proinflammatory bacterial molecules. Dysfunction of components of the innate immune system has recently been implicated in chronic inflammatory bowel diseases such as Crohn's disease and ulcerative colitis, illustrating the pivotal role of innate immunity in maintaining the delicate balance between immune tolerance and immune response in the gut.  相似文献   

12.
Summary There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic effects of the intake and digestion of foold on the gut epithelium.—Several peptides have been associated with the regulation of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow the rigorous in vivo evaluation of the trophic role of these potentially very important peptides.  相似文献   

13.
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.  相似文献   

14.
Chronic inflammation associated with obesity plays a major role in the development of metabolic diseases, cancer, and autoimmune diseases. Among Th subsets, Th17 cells are involved in the pathogenesis of autoimmune disorders such as psoriasis, rheumatoid arthritis, inflammatory bowel disease, steroid-resistant asthma, and multiple sclerosis. Accumulating data suggest that reciprocal interactions between the metabolic systems and immune system play pivotal roles in the pathogenesis of obesity-associated diseases. We herein outline the developing principles in the control of T cell differentiation and function via their cellular metabolism. Also discussed are recent findings that changes in the intracellular metabolism, including fatty acid metabolism, affect the Th17 cell function in obese individuals. Finally, we will also highlight the unique molecular mechanism involved in the activation of retinoid-related orphan receptor-gamma-t (RORγt) by intracellular metabolism and discuss a new therapeutic approach for treating autoimmune disorders through the inhibition of RORγt.  相似文献   

15.
In addition to their established role as a physical barrier to invading pathogens and other harmful agents, intestinal epithelial cells (IEC) are actively involved in local immune reactions. In the past years, evidence has accumulated suggesting the role of IEC in the immunopathology of intestinal inflammatory disorders (IBD). Recent advances in research on bacteriophages strongly suggest that—in addition to their established antibacterial activity—they have immunomodulating properties that are potentially useful in the clinic. We suggest that these immunomodulating phage activities targeting IEC may open novel treatment perspectives in disorders of the alimentary tract, particularly IBD.  相似文献   

16.
Summary The discovery of neuropeptides in enteric neurons has revolutionized the study of the microcircuitry of the enteric nervous system. Form immunohistochemistry, it is now clear that some individual enteric neurons contain several different neuropeptides with or without other transmitter-specific markers and that these markers occur in various combinations. There is evidence from experiments in which nerve pathways are interrupted that populations of enteric neurons with different combinations of markers have different projection patterns, sending their processes to distinct targets using different routes. Correlations between the neurochemistry of enteric neurons and the types of synaptic inputs they receive are also beginning to emerge from electrophysiological studies. These findings imply that enteric neurons are chemically coded by the combinations of peptides and other transmitter-related substances they contain and that the coding of each population correlates with its role in the neuronal pathways that control gastrointestinal function.  相似文献   

17.
The discovery of neuropeptides in enteric neurons has revolutionized the study of the microcircuitry of the enteric nervous system. From immunohistochemistry, it is now clear that some individual enteric neurons contain several different neuropeptides with or without other transmitter-specific markers and that these markers occur in various combinations. There is evidence from experiments in which nerve pathways are interrupted that populations of enteric neurons with different combinations of markers have different projection patterns, sending their processes to distinct targets using different routes. Correlations between the neurochemistry of enteric neurons and the types of synaptic inputs they receive are also beginning to emerge from electrophysiological studies. These findings imply that enteric neurons are chemically coded by the combinations of peptides and other transmitter-related substances they contain and that the coding of each population correlates with its role in the neuronal pathways that control gastrointestinal function.  相似文献   

18.
Peptides and epithelial growth regulation   总被引:1,自引:0,他引:1  
There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic effects of the intake and digestion of food on the gut epithelium. Several peptides have been associated with the regulation of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow the rigorous in vivo evaluation of the trophic role of these potentially very important peptides.  相似文献   

19.
Protein misfolding and disease: the case of prion disorders   总被引:2,自引:0,他引:2  
Recent findings strongly support the hypothesis that diverse human disorders, including the most common neurodegenerative diseases, arise from misfolding and aggregation of an underlying protein. Despite the good evidence for the involvement of protein misfolding in disease pathogenesis, the mechanism by which protein conformational changes participate in the disease is still unclear. Among the best-studied diseases of this group are the transmissible spongiform encephalopathies or prion-related disorders, in which misfolding of the normal prion protein plays a key role in the disease. In this article we review recent data on the link between prion protein misfolding and the pathogensis of spongiform encephalopathies. Received 15 July 2002; received after revision 19 August 2002; accepted 23 August 2002 RID="*" ID="*"Corresponding author.  相似文献   

20.
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号