首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 861 毫秒
1.
随机选择初始聚类中心的k-means算法易使聚类陷入局部最优解、聚类结果不稳定且受孤立点影响大等问题.针对这些问题,提出了一种优化初始聚类中心的方法及孤立点排除法.该算法首先选择距离最远的两点加入初始化中心,再根据这两点将原始簇分成两个聚簇,在这两个簇中挑选方差较大的簇按照一定的规则进行分裂直至找到k个中心,初始中心的选择过程中用到孤立点排除法.在UCI数据集及人造含一定比例的噪音数据集下,通过实验比较了改进算法与其他算法的优劣.实验表明,改进后的算法不仅受孤立点的影响小、稳定性好而且准确度也高.  相似文献   

2.
《河南科学》2016,(3):348-351
传统K-means聚类算法中聚类初始中心点是随机确定的,实际聚类数据集中可能有孤立点,造成了每次聚类的结果不同,聚类质量不同,有时陷入局部优化状态.针对这些问题,研究者曾试图用距离法解决孤立点的判断和确定初始聚类中心.这种思路存在不科学性.因为孤立点不仅指远离其他点,同时它的周围点稀疏;另外,当数据量过大、数据特征值过多时,算法的运算量大,需要占用大量的计算机资源,运算速度过慢.对传统的K-means聚类算法进行研究,提出了基于密度参数和距离理论的初始聚类中心的确定和孤立点的判断,对传统的K-means聚类算法进行改进.  相似文献   

3.
为了弥补K-Means算法对孤立点数据敏感的缺陷,提高K-Means算法对包含孤立点数据集的聚类效果,在深入研究K-Means算法的基础上,提出了基于PAM和簇阈值的改进K-Means聚类算法。该算法首先对待聚类数据进行抽样,然后利用PAM算法获取样本数据的聚类中心,以样本数据的聚类中心作为KMeans算法的初始聚类中心。在聚类迭代过程中动态计算各簇阈值,利用簇阈值准确地过滤孤立点数据。实验结果表明,本文提出的算法不仅聚类时间短,而且具有较高的聚类准确率。  相似文献   

4.
针对传统K-means算法的聚类结果依赖初始聚类中心的缺陷,提出了一种基于密度的改进K-means聚类算法,该算法选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-means聚类。针对PAM算法时间复杂度高,且不利于大数据集处理的缺陷,提出了一种基于密度的改进K-medoids聚类算法,在选取初始中心点时根据数据集样本的分布特征选取,使得初始中心点位于不同类簇。UCI机器学习数据库数据集和随机生成的带有噪音点的人工模拟数据集的实验测试证明,基于密度的改进K-means算法和基于密度的改进Kmedoids算法都具有很好的聚类效果,运行时间短,收敛速度快,有抗噪性能。  相似文献   

5.
移动时间层次聚类(Travel-Time based Hierarchical Clustering,TTHC)是一种新的势能聚类算法,尽管具有较好的聚类效果,但是该算法需要人工设定聚类数目,而且在分配样本的时候仅根据相似度,忽略了距离和势能的影响.针对以上问题,提出一种自动确定聚类中心的移动时间势能聚类算法.首先计算每个数据点的势能和相似度,然后根据相似度确定数据点的父节点,得到数据点与父节点的距离;然后,根据数据点与父节点的相似度、距离和数据点的势能得到综合考量值,根据综合考量值自动确定聚类中心;最后,将剩余数据点分配到比其势能小且与其相似度最大的数据点所属类簇,得到聚类结果.将新算法与TTHC算法进行比较,在人工数据集和真实数据集上的实验结果表明,新算法不仅能够自动确定聚类数目,而且采用了更优的分配机制,可以产生更好的聚类结果.  相似文献   

6.
针对K-means聚类算法依赖初始点、聚类结果受初始点的选取影响较大的缺陷,给出了一种稳定的基于影响空间的初始点优化K-means聚类算法。该算法借助了影响空间数据结构和定义的加权距离吸引因子,将特殊中心点合并为K个微簇,并对微簇中的数据点加权平均得到K个初始中心点,然后执行K-means算法;最后,理论分析和实验结果表明,该初始点优化K-means聚类算法能够有效降低噪声数据对聚类结果的影响,在聚类结果、聚类过程效率方面有较大优势。  相似文献   

7.
针对传统K-means算法随机选择初始聚类中心容易造成聚类结果不稳定且准确率低等问题,基于拟蒙特卡洛(Quasi-Monte Carlo,QMC)方法提出一种新的初始聚类中心确定方法;该算法利用QMC序列分布的超均匀性特点,对整个样本空间中的样本分布进行采样估计;基于k近邻距离(k-distance)对QMC序列点进行加权的K-means聚类,得到初始聚类中心。该算法的计算复杂度为O(max(d、n)logn),其中d、n分别表示样本数据的维数和数量;在人工数据和实际数据集上的仿真实验表明,该算法能选择更优的初始聚类中心,有效降低K-means算法的迭代次数,提高聚类的准确性、鲁棒性和收敛速度。  相似文献   

8.
目的探索同时确定K-means算法的最佳聚类数K和最佳初始聚类中心的方法,使K-means算法的聚类结果尽可能地收敛于全局最优解或近似全局最优解。方法以次胜者受罚竞争学习(Rival Penalized Competitive Learning,RPCL)作为K-means的预处理步骤,以其学习结果作为K-means的聚类数和初始聚类中心并依据数据集样本自然分布定义样本密度,将此密度引入RPCL的节点权值调整,以此密度RPCL的输出作为K-means的最佳聚类数K和最佳初始聚类中心。采用UCI机器学习数据库数据集以及随机生成的带有噪音点的人工模拟数据集进行实验测试,并用不同的聚类结果评价指标对聚类结果作了分析。结果提出的密度RPCL为K-means提供了最佳的类簇数和最佳的初始聚类中心。结论基于密度RPCL的K-means算法具有很好的聚类效果,对噪音数据有很强的抗干扰性能。  相似文献   

9.
针对K-means算法需要人为确定聚类个数和随机选取初始聚类中心导致结果陷入局部最优的问题,结合基于密度峰值的聚类算法CFSFDP(Clustering by Fast Search and Find of Density Peaks),提出一种改进的无参数K-means算法。首先,计算样本点的局部密度和离散度。然后,建立决策图,将两个参数组成向量,计算每个点到周围5个点的距离,筛选出距离大于2倍均方差且密度大于平均密度的点作为算法的初始聚类中心,统计聚类中心个数k作为聚类个数,将初始聚类个数k以及初始聚类中心作为K-means算法的初始参数对数据进行聚类。最后,对UCI(University of California, Irvine)数据集、人工建立的高斯数据集以及真实刀具振动数据集3种不同类型的数据集进行聚类。结果表明,所提算法保持传统算法全局最优性,并验证了提出算法的有效性。由于K-means是一种无监督聚类方法,在获得较优刀具状态识别结果的同时,可减少人工数据标定、有监督训练等工作量及运算成本,这对于准确实时提取数控机床刀具运行状态具有较高的实际意义。  相似文献   

10.
基于2d-距离改进的K-means聚类算法研究   总被引:1,自引:0,他引:1  
为了解决原始K-means算法随机选取聚类中心对聚类结果产生较大影响的不足和孤立点的存在对聚类精度的破坏,以及两者之间的相互牵制性,采用基于2d-距离的DKC值来对原始样本数据集进行预处理以分辨孤立点,同时确定初始的聚类中心,达到消除两者相互影响的效果,使得聚类中心相对稳定,改进后的算法较原始的算法在准确度上得到了改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号