首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphoinositide-3-OH kinases (PI(3)Ks) constitute a family of evolutionarily conserved lipid kinases that regulate a vast array of fundamental cellular responses, including proliferation, transformation, differentiation and protection from apoptosis. PI(3)K-mediated activation of the cell survival kinase PKB/Akt, and negative regulation of PI(3)K signalling by the tumour suppressor PTEN (refs 3, 4) are key regulatory events in tumorigenesis. Thus, a model has arisen that PI(3)Ks promote development of cancers. Here we report that genetic inactivation of the p110gamma catalytic subunit of PI(3)Kgamma (ref. 8) leads to development of invasive colorectal adenocarcinomas in mice. In humans, p110gamma protein expression is lost in primary colorectal adenocarcinomas from patients and in colon cancer cell lines. Overexpression of wild-type or kinase-dead p110gamma in human colon cancer cells with mutations of the tumour suppressors APC and p53, or the oncogenes beta-catenin and Ki-ras, suppressed tumorigenesis. Thus, loss of p110gamma in mice leads to spontaneous, malignant epithelial tumours in the colorectum and p110gamma can block the growth of human colon cancer cells.  相似文献   

2.
3.
Lim KH  Ancrile BB  Kashatus DF  Counter CM 《Nature》2008,452(7187):646-649
Tumour cells become addicted to the expression of initiating oncogenes like Ras, such that loss of oncogene expression in established tumours leads to tumour regression. HRas, NRas or KRas are mutated to remain in the active GTP-bound oncogenic state in many cancers. Although Ras activates several proteins to initiate human tumour growth, only PI3K, through activation of protein kinase B (PKB; also known as AKT), must remain activated by oncogenic Ras to maintain this growth. Here we show that blocking phosphorylation of the AKT substrate, endothelial nitric oxide synthase (eNOS or NOS3), inhibits tumour initiation and maintenance. Moreover, eNOS enhances the nitrosylation and activation of endogenous wild-type Ras proteins, which are required throughout tumorigenesis. We suggest that activation of the PI3K-AKT-eNOS-(wild-type) Ras pathway by oncogenic Ras in cancer cells is required to initiate and maintain tumour growth.  相似文献   

4.
Lin HK  Bergmann S  Pandolfi PP 《Nature》2004,431(7005):205-211
Transforming growth factor beta (TGF-beta) is a pluripotent cytokine that controls key tumour suppressive functions, but cancer cells are often unresponsive to it. The promyelocytic leukaemia (PML) tumour suppressor of acute promyelocytic leukaemia (APL) accumulates in the PML nuclear body, but cytoplasmic PML isoforms of unknown function have also been described. Here we show that cytoplasmic Pml is an essential modulator of TGF-beta signalling. Pml-null primary cells are resistant to TGF-beta-dependent growth arrest, induction of cellular senescence and apoptosis. These cells also have impaired phosphorylation and nuclear translocation of the TGF-beta signalling proteins Smad2 and Smad3, as well as impaired induction of TGF-beta target genes. Expression of cytoplasmic Pml is induced by TGF-beta. Furthermore, cytoplasmic PML physically interacts with Smad2/3 and SARA (Smad anchor for receptor activation) and is required for association of Smad2/3 with SARA and for the accumulation of SARA and TGF-beta receptor in the early endosome. The PML-RARalpha oncoprotein of APL can antagonize cytoplasmic PML function and APL cells have defects in TGF-beta signalling similar to those observed in Pml-null cells. Our findings identify cytoplasmic PML as a critical TGF-beta regulator, and further implicate deregulated TGF-beta signalling in cancer pathogenesis.  相似文献   

5.
6.
Evading apoptosis is considered to be a hallmark of cancer, because mutations in apoptotic regulators invariably accompany tumorigenesis. Many chemotherapeutic agents induce apoptosis, and so disruption of apoptosis during tumour evolution can promote drug resistance. For example, Akt is an apoptotic regulator that is activated in many cancers and may promote drug resistance in vitro. Nevertheless, how Akt disables apoptosis and its contribution to clinical drug resistance are unclear. Using a murine lymphoma model, we show that Akt promotes tumorigenesis and drug resistance by disrupting apoptosis, and that disruption of Akt signalling using the mTOR inhibitor rapamycin reverses chemoresistance in lymphomas expressing Akt, but not in those with other apoptotic defects. eIF4E, a translational regulator that acts downstream of Akt and mTOR, recapitulates Akt's action in tumorigenesis and drug resistance, but is unable to confer sensitivity to rapamycin and chemotherapy. These results establish Akt signalling through mTOR and eIF4E as an important mechanism of oncogenesis and drug resistance in vivo, and reveal how targeting apoptotic programmes can restore drug sensitivity in a genotype-dependent manner.  相似文献   

7.
A continuum model for tumour suppression   总被引:1,自引:0,他引:1  
Berger AH  Knudson AG  Pandolfi PP 《Nature》2011,476(7359):163-169
This year, 2011, marks the forty-year anniversary of the statistical analysis of retinoblastoma that provided the first evidence that tumorigenesis can be initiated by as few as two mutations. This work provided the foundation for the two-hit hypothesis that explained the role of recessive tumour suppressor genes (TSGs) in dominantly inherited cancer susceptibility syndromes. However, four decades later, it is now known that even partial inactivation of tumour suppressors can critically contribute to tumorigenesis. Here we analyse this evidence and propose a continuum model of TSG function to explain the full range of TSG mutations found in cancer.  相似文献   

8.
9.
Tumorigenesis is a multi-step process that requires activation of oncogenes and inactivation of tumour suppressor genes. Mouse models of human cancers have recently demonstrated that continuous expression of a dominantly acting oncogene (for example, Hras, Kras and Myc) is often required for tumour maintenance; this phenotype is referred to as oncogene addiction. This concept has received clinical validation by the development of active anticancer drugs that specifically inhibit the function of oncoproteins such as BCR-ABL, c-KIT and EGFR. Identifying additional gene mutations that are required for tumour maintenance may therefore yield clinically useful targets for new cancer therapies. Although loss of p53 function is a common feature of human cancers, it is not known whether sustained inactivation of this or other tumour suppressor pathways is required for tumour maintenance. To explore this issue, we developed a Cre-loxP-based strategy to temporally control tumour suppressor gene expression in vivo. Here we show that restoring endogenous p53 expression leads to regression of autochthonous lymphomas and sarcomas in mice without affecting normal tissues. The mechanism responsible for tumour regression is dependent on the tumour type, with the main consequence of p53 restoration being apoptosis in lymphomas and suppression of cell growth with features of cellular senescence in sarcomas. These results support efforts to treat human cancers by way of pharmacological reactivation of p53.  相似文献   

10.
11.
Jin H  Sperka T  Herrlich P  Morrison H 《Nature》2006,442(7102):576-579
The tumour suppressor protein merlin (encoded by the neurofibromatosis type 2 gene NF2) is an important regulator of proliferation in many cell and tissue types. Merlin is activated by dephosphorylation at serine 518 (S518), which occurs on serum withdrawal or on cell-cell or cell-matrix contact. However, the relevant phosphatase that activates merlin's tumour suppressor function is unknown. Here we identify this enzyme as the myosin phosphatase (MYPT-1-PP1delta). The cellular MYPT-1-PP1delta-specific inhibitor CPI-17 causes a loss of merlin function characterized by merlin phosphorylation, Ras activation and transformation. Constitutively active merlin (S518A) reverses CPI-17-induced transformation, showing that merlin is the decisive substrate of MYPT-1-PP1delta in tumour suppression. In addition we show that CPI-17 levels are raised in several human tumour cell lines and that the downregulation of CPI-17 induces merlin dephosphorylation, inhibits Ras activation and abolishes the transformed phenotype. MYPT-1-PP1delta and its substrate merlin are part of a previously undescribed tumour suppressor cascade that can be hindered in two ways, by mutation of the NF2 gene and by upregulation of the oncoprotein CPI-17.  相似文献   

12.
13.
The FBXW7/hCDC4 gene encodes a ubiquitin ligase implicated in the control of chromosome stability. Here we identify the mouse Fbxw7 gene as a p53-dependent tumour suppressor gene by using a mammalian genetic screen for p53-dependent genes involved in tumorigenesis. Radiation-induced lymphomas from p53+/- mice, but not those from p53-/- mice, show frequent loss of heterozygosity and a 10% mutation rate of the Fbxw7 gene. Fbxw7+/- mice have greater susceptibility to radiation-induced tumorigenesis, but most tumours retain and express the wild-type allele, indicating that Fbxw7 is a haploinsufficient tumour suppressor gene. Loss of Fbxw7 alters the spectrum of tumours that develop in p53 deficient mice to include a range of tumours in epithelial tissues such as the lung, liver and ovary. Mouse embryo fibroblasts from Fbxw7-deficient mice, or wild-type mouse cells expressing Fbxw7 small interfering RNA, have higher levels of Aurora-A kinase, c-Jun and Notch4, but not of cyclin E. We propose that p53-dependent loss of Fbxw7 leads to genetic instability by mechanisms that might involve the activation of Aurora-A, providing a rationale for the early occurrence of these mutations in human cancers.  相似文献   

14.
15.
16.
Staller P  Sulitkova J  Lisztwan J  Moch H  Oakeley EJ  Krek W 《Nature》2003,425(6955):307-311
Organ-specific metastasis is governed, in part, by interactions between chemokine receptors on cancer cells and matching chemokines in target organs. For example, malignant breast cancer cells express the chemokine receptor CXCR4 and commonly metastasize to organs that are an abundant source of the CXCR4-specific ligand stromal cell-derived factor-1alpha (ref. 1). It is still uncertain how an evolving tumour cell is reprogrammed to express CXCR4, thus implementing the tendency to metastasize to specific organs. Here we show that the von Hippel-Lindau tumour suppressor protein pVHL negatively regulates CXCR4 expression owing to its capacity to target hypoxia-inducible factor (HIF) for degradation under normoxic conditions. This process is suppressed under hypoxic conditions, resulting in HIF-dependent CXCR4 activation. An analysis of clear cell renal carcinoma that manifests mutation of the VHL gene in most cases revealed an association of strong CXCR4 expression with poor tumour-specific survival. These results suggest a mechanism for CXCR4 activation during tumour cell evolution and imply that VHL inactivation acquired by incipient tumour cells early in tumorigenesis confers not only a selective survival advantage but also the tendency to home to selected organs.  相似文献   

17.
18.
19.
Sage J  Miller AL  Pérez-Mancera PA  Wysocki JM  Jacks T 《Nature》2003,424(6945):223-228
Cancer cells arise from normal cells through the acquisition of a series of mutations in oncogenes and tumour suppressor genes. Mouse models of human cancer often rely on germline alterations that activate or inactivate genes of interest. One limitation of this approach is that germline mutations might have effects other than somatic mutations, owing to developmental compensation. To model sporadic cancers associated with inactivation of the retinoblastoma (RB) tumour suppressor gene in humans, we have produced a conditional allele of the mouse Rb gene. We show here that acute loss of Rb in primary quiescent cells is sufficient for cell cycle entry and has phenotypic consequences different from germline loss of Rb function. This difference is explained in part by functional compensation by the Rb-related gene p107. We also show that acute loss of Rb in senescent cells leads to reversal of the cellular senescence programme. Thus, the use of conditional knockout strategies might refine our understanding of gene function and help to model human cancer more accurately.  相似文献   

20.
During the evolution of cancer, the incipient tumour experiences 'oncogenic stress', which evokes a counter-response to eliminate such hazardous cells. However, the nature of this stress remains elusive, as does the inducible anti-cancer barrier that elicits growth arrest or cell death. Here we show that in clinical specimens from different stages of human tumours of the urinary bladder, breast, lung and colon, the early precursor lesions (but not normal tissues) commonly express markers of an activated DNA damage response. These include phosphorylated kinases ATM and Chk2, and phosphorylated histone H2AX and p53. Similar checkpoint responses were induced in cultured cells upon expression of different oncogenes that deregulate DNA replication. Together with genetic analyses, including a genome-wide assessment of allelic imbalances, our data indicate that early in tumorigenesis (before genomic instability and malignant conversion), human cells activate an ATR/ATM-regulated DNA damage response network that delays or prevents cancer. Mutations compromising this checkpoint, including defects in the ATM-Chk2-p53 pathway, might allow cell proliferation, survival, increased genomic instability and tumour progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号