首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sikes EL  Samson CR  Guilderson TP  Howard WR 《Nature》2000,405(6786):555-559
Marine radiocarbon (14C) dates are widely used for dating oceanic events and as tracers of ocean circulation, essential components for understanding ocean-climate interactions. Past ocean ventilation rates have been determined by the difference between radiocarbon ages of deep-water and surface-water reservoirs, but the apparent age of surface waters (currently approximately 400 years in the tropics and approximately 1,200 years in Antarctic waters) might not be constant through time, as has been assumed in radiocarbon chronologies and palaeoclimate studies. Here we present independent estimates of surface-water and deep-water reservoir ages in the New Zealand region since the last glacial period, using volcanic ejecta (tephras) deposited in both marine and terrestrial sediments as stratigraphic markers. Compared to present-day values, surface-reservoir ages from 11,900 14C years ago were twice as large (800 years) and during glacial times were five times as large (2,000 years), contradicting the assumption of constant surface age. Furthermore, the ages of glacial deep-water reservoirs were much older (3,000-5,000 years). The increase in surface-to-deep water age differences in the glacial Southern Ocean suggests that there was decreased ocean ventilation during this period.  相似文献   

2.
Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods, but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal. Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that--together with previously published results--show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition approximately 14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration. We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic, which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir, but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.  相似文献   

3.
The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.  相似文献   

4.
Blard PH  Lavé J  Pik R  Wagnon P  Bourlès D 《Nature》2007,449(7162):591-594
The magnitude of atmospheric cooling during the Last Glacial Maximum and the timing of the transition into the current interglacial period remain poorly constrained in tropical regions, partly because of a lack of suitable climate records. Glacial moraines provide a method of reconstructing past temperatures, but they are relatively rare in the tropics. Here we present a reconstruction of atmospheric temperatures in the central Pacific during the last deglaciation on the basis of cosmogenic 3He ages of moraines and numerical modelling of the ice cap on Mauna Kea volcano, Hawaii--the only highland in the central Pacific on which moraines that formed during the last glacial period are preserved. Our reconstruction indicates that the Last Glacial Maximum occurred between 19,000 and 16,000 years ago in this region and that temperatures at high elevations were about 7 degrees C lower than today during this interval. Glacial retreat began about 16,000 years ago, but temperatures were still about 6.5 degrees C lower than today until 15,000 years ago. When combined with estimates of sea surface temperatures in the central Pacific Ocean, our reconstruction indicates that the lapse rate during the Last Glacial Maximum was higher than at present, which is consistent with the proposal that the atmosphere was drier at that time. Furthermore, the persistence of full glacial conditions until 15,000 years ago is consistent with the relatively late and abrupt transition to warmer temperatures in Greenland, indicating that there may have been an atmospheric teleconnection between the central Pacific and North Atlantic regions during the last deglaciation.  相似文献   

5.
The overshoot phenomenon of the Atlantic thermohaline circulation (THC) is a transient climate response to meltwater forcing and could induce intense climate change by increasing the magnitudes of Atlantic THC changes at the end of meltwater discharges. This phenomenon was formally presented with the successfully simulated Bolling-Allerod (BA) event in the first transient simulation of the last deglaciation with fully coupled model NCAR-CCSM3 (TraCE-21K). Currently, not all proxy records of Atlantic THC support the occurrence of the THC overshoot at BA. Commonly used THC proxy from Bermuda Rise (GGC5) does not exhibit THC overshoot at BA but other proxies such as TTR-451 at Eirik Drift do. How to interpret this regional discrepancy of proxy records is a key question for the validation of the Atlantic THC overshoot at BA. Here, we show that the vigor of deep circulation varies regionally during the Atlantic THC overshoot at BA in TraCE-21K simulation, and this regional discrepancy in the simulation is consistent with that in the marine sediment records in North Atlantic. The consistent model-proxy evidence supports the occurrence of Atlantic THC overshoot at BA.  相似文献   

6.
Knorr G  Lohmann G 《Nature》2003,424(6948):532-536
During the two most recent deglaciations, the Southern Hemisphere warmed before Greenland. At the same time, the northern Atlantic Ocean was exposed to meltwater discharge, which is generally assumed to reduce the formation of North Atlantic Deep Water. Yet during deglaciation, the Atlantic thermohaline circulation became more vigorous, in the transition from a weak glacial to a strong interglacial mode. Here we use a three-dimensional ocean circulation model to investigate the impact of Southern Ocean warming and the associated sea-ice retreat on the Atlantic thermohaline circulation. We find that a gradual warming in the Southern Ocean during deglaciation induces an abrupt resumption of the interglacial mode of the thermohaline circulation, triggered by increased mass transport into the Atlantic Ocean via the warm (Indian Ocean) and cold (Pacific Ocean) water route. This effect prevails over the influence of meltwater discharge, which would oppose a strengthening of the thermohaline circulation. A Southern Ocean trigger for the transition into an interglacial mode of circulation provides a consistent picture of Southern and Northern hemispheric climate change at times of deglaciation, in agreement with the available proxy records.  相似文献   

7.
Diatom data from core MD992271 on the North Icelandic shelf record a cooling trend through the last 3000 years. This is indicated by a general decrease in warm water species and an increase in cold water taxa. The relative abundance of these two diatom groups changed periodically, suggesting that the climate also fluctuated within this time period. The results of diatom-based transfer function calculation show that the summer sea-surface temperatures (SSTs) before 1400 cal. a BP were generally higher than the mean value for the last 3000 years and the summer SSTs fluctuated around the mean between 1400 and 700 cal. a BP, and dropped to the values below the mean after 700 cal. a BP. Four cooling events were distinguished, centered at around 2600, 1900, 1300 and 600 cal. a BP respectively. The results are not only consistent with the data from neighbouring cores HM107-03 and MD992275, but also comparable with those from the GISP2 ice core and from other marine sediment records in the North Atlantic. This suggests that changes in the summer SSTs reflect regional climate variations in the North Atlantic. On the North Icelandic shelf, the summer SST variation is a result of changes in the in-teraction between the cold and the warm currents in the area.  相似文献   

8.
The two main constituent water masses of the deep North Atlantic Ocean-North Atlantic Deep Water at the bottom and Labrador Sea Water at an intermediate level-are currently formed in the Nordic seas and the Labrador Sea, respectively. The rate of formation of these two water masses tightly governs the strength of the global ocean circulation and the associated heat transport across the North Atlantic Ocean. Numerical simulations have suggested a possible shut-down of Labrador Sea Water formation as a consequence of global warming. Here we use micropalaeontological data and stable isotope measurements in both planktonic and benthic foraminifera from deep Labrador Sea cores to investigate the density structure of the water column during the last interglacial period, which was thought to be about 2 degrees C warmer than present. Our results indicate that today's stratification between Labrador Sea Water and North Atlantic Deep Water never developed during the last interglacial period. Instead, a buoyant surface layer was present above a single water mass originating from the Nordic seas. Thus the present situation, with an active site of intermediate-water formation in the Labrador Sea, which settled some 7,000 years ago, has no analogue throughout the last climate cycle.  相似文献   

9.
Rohling EJ  Pälike H 《Nature》2005,434(7036):975-979
The extent of climate variability during the current interglacial period, the Holocene, is still debated. Temperature records derived from central Greenland ice cores show one significant temperature anomaly between 8,200 and 8,100 years ago, which is often attributed to a meltwater outflow into the North Atlantic Ocean and a slowdown of North Atlantic Deep Water formation--this anomaly provides an opportunity to study such processes with relevance to present-day freshening of the North Atlantic. Anomalies in climate proxy records from locations around the globe are often correlated with this sharp event in Greenland. But the anomalies in many of these records span 400 to 600 years, start from about 8,600 years ago and form part of a repeating pattern within the Holocene. More sudden climate changes around 8,200 years ago appear superimposed on this longer-term cooling. The compounded nature of the signals implies that far-field climate anomalies around 8,200 years ago cannot be used in a straightforward manner to assess the impact of a slowdown of North Atlantic Deep Water formation, and the geographical extent of the rapid cooling event 8,200 years ago remains to be determined.  相似文献   

10.
Henderson GM  Slowey NC 《Nature》2000,404(6773):61-66
Milankovitch proposed that summer insolation at mid-latitudes in the Northern Hemisphere directly causes the ice-age climate cycles. This would imply that times of ice-sheet collapse should correspond to peaks in Northern Hemisphere June insolation. But the penultimate deglaciation has proved controversial because June insolation peaks 127 kyr ago whereas several records of past climate suggest that change may have occurred up to 15 kyr earlier. There is a clear signature of the penultimate deglaciation in marine oxygen-isotope records. But dating this event, which is significantly before the 14C age range, has not been possible. Here we date the penultimate deglaciation in a record from the Bahamas using a new U-Th isochron technique. After the necessary corrections for alpha-recoil mobility of 234U and 230Th and a small age correction for sediment mixing, the midpoint age for the penultimate deglaciation is determined to be 135 +/- 2.5 kyr ago. This age is consistent with some coral-based sea-level estimates, but it is difficult to reconcile with June Northern Hemisphere insolation as the trigger for the ice-age cycles. Potential alternative driving mechanisms for the ice-age cycles that are consistent with such an early date for the penultimate deglaciation are either the variability of the tropical ocean-atmosphere system or changes in atmospheric CO2 concentration controlled by a process in the Southern Hemisphere.  相似文献   

11.
It is thought that the Cerberus Fossae fissures on Mars were the source of both lava and water floods two to ten million years ago. Evidence for the resulting lava plains has been identified in eastern Elysium, but seas and lakes from these fissures and previous water flooding events were presumed to have evaporated and sublimed away. Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist. We infer that the evidence is consistent with a frozen body of water, with surface pack-ice, around 5 degrees north latitude and 150 degrees east longitude in southern Elysium. The frozen lake measures about 800 x 900 km in lateral extent and may be up to 45 metres deep--similar in size and depth to the North Sea. From crater counts, we determined its age to be 5 +/- 2 million years old. If our interpretation is confirmed, this is a place that might preserve evidence of primitive life, if it has ever developed on Mars.  相似文献   

12.
Moreno PI  Jacobson GL  Lowell TV  Denton GH 《Nature》2001,409(6822):804-808
Understanding the relative timings of climate events in the Northern and Southern hemispheres is a prerequisite for determining the causes of abrupt climate changes. But climate records from the Patagonian Andes and New Zealand for the period of transition from glacial to interglacial conditions--about 14.6-10 kyr before present, as determined by radiocarbon dating--show varying degrees of correlation with similar records from the Northern Hemisphere. It is necessary to resolve these apparent discrepancies in order to be able to assess the relative roles of Northern Hemisphere ice sheets and oceanic, atmospheric and astronomical influences in initiating climate change in the late-glacial period. Here we report pollen records from three sites in the Lake District of southern Chile (41 degrees S) from which we infer conditions similar to modern climate between about 13 and 12.2 14C kyr before present (BP), followed by cooling events at about 12.2 and 11.4 14C kyr BP, and then by a warming at about 9.8 14C kyr BP. These events were nearly synchronous with important palaeoclimate changes recorded in the North Atlantic region, supporting the idea that interhemispheric linkage through the atmosphere was the primary control on climate during the last deglaciation. In other regions of the Southern Hemisphere, where climate events are not in phase with those in the Northern Hemisphere, local oceanic influences may have counteracted the effects that propagated through the atmosphere.  相似文献   

13.
Bintanja R  van de Wal RS  Oerlemans J 《Nature》2005,437(7055):125-128
Marine records of sediment oxygen isotope compositions show that the Earth's climate has gone through a succession of glacial and interglacial periods during the past million years. But the interpretation of the oxygen isotope records is complicated because both isotope storage in ice sheets and deep-water temperature affect the recorded isotopic composition. Separating these two effects would require long records of either sea level or deep-ocean temperature, which are currently not available. Here we use a coupled model of the Northern Hemisphere ice sheets and ocean temperatures, forced to match an oxygen isotope record for the past million years compiled from 57 globally distributed sediment cores, to quantify both contributions simultaneously. We find that the ice-sheet contribution to the variability in oxygen isotope composition varied from ten per cent in the beginning of glacial periods to sixty per cent at glacial maxima, suggesting that strong ocean cooling preceded slow ice-sheet build-up. The model yields mutually consistent time series of continental mean surface temperatures between 40 and 80 degrees N, ice volume and global sea level. We find that during extreme glacial stages, air temperatures were 17 +/- 1.8 degrees C lower than present, with a 120 +/- 10 m sea level equivalent of continental ice present.  相似文献   

14.
Tarasov L  Peltier WR 《Nature》2005,435(7042):662-665
The last deglaciation was abruptly interrupted by a millennial-scale reversal to glacial conditions, the Younger Dryas cold event. This cold interval has been connected to a decrease in the rate of North Atlantic Deep Water formation and to a resulting weakening of the meridional overturning circulation owing to surface water freshening. In contrast, an earlier input of fresh water (meltwater pulse 1a), whose origin is disputed, apparently did not lead to a reduction of the meridional overturning circulation. Here we analyse an ensemble of simulations of the drainage chronology of the North American ice sheet in order to identify the geographical release points of freshwater forcing during deglaciation. According to the simulations with our calibrated glacial systems model, the North American ice sheet contributed about half the fresh water of meltwater pulse 1a. During the onset of the Younger Dryas, we find that the largest combined meltwater/iceberg discharge was directed into the Arctic Ocean. Given that the only drainage outlet from the Arctic Ocean was via the Fram Strait into the Greenland-Iceland-Norwegian seas, where North Atlantic Deep Water is formed today, we hypothesize that it was this Arctic freshwater flux that triggered the Younger Dryas cold reversal.  相似文献   

15.
Surface ocean conditions in the equatorial Pacific Ocean could hold the clue to whether millennial-scale global climate change during glacial times was initiated through tropical ocean-atmosphere feedbacks or by changes in the Atlantic thermohaline circulation. North Atlantic cold periods during Heinrich events and millennial-scale cold events (stadials) have been linked with climatic changes in the tropical Atlantic Ocean and South America, as well as the Indian and East Asian monsoon systems, but not with tropical Pacific sea surface temperatures. Here we present a high-resolution record of sea surface temperatures in the eastern tropical Pacific derived from alkenone unsaturation measurements. Our data show a temperature drop of approximately 1 degrees C, synchronous (within dating uncertainties) with the shutdown of the Atlantic meridional overturning circulation during Heinrich event 1, and a smaller temperature drop of approximately 0.5 degrees C synchronous with the smaller reduction in the overturning circulation during the Younger Dryas event. Both cold events coincide with maxima in surface ocean productivity as inferred from 230Th-normalized carbon burial fluxes, suggesting increased upwelling at the time. From the concurrence of equatorial Pacific cooling with the two North Atlantic cold periods during deglaciation, we conclude that these millennial-scale climate changes were probably driven by a reorganization of the oceans' thermohaline circulation, although possibly amplified by tropical ocean-atmosphere interaction as suggested before.  相似文献   

16.
Genty D  Blamart D  Ouahdi R  Gilmour M  Baker A  Jouzel J  Van-Exter S 《Nature》2003,421(6925):833-837
The signature of Dansgaard-Oeschger events--millennial-scale abrupt climate oscillations during the last glacial period--is well established in ice cores and marine records. But the effects of such events in continental settings are not as clear, and their absolute chronology is uncertain beyond the limit of (14)C dating and annual layer counting for marine records and ice cores, respectively. Here we present carbon and oxygen isotope records from a stalagmite collected in southwest France which have been precisely dated using 234U/230Th ratios. We find rapid climate oscillations coincident with the established Dansgaard-Oeschger events between 83,000 and 32,000 years ago in both isotope records. The oxygen isotope signature is similar to a record from Soreq cave, Israel, and deep-sea records, indicating the large spatial scale of the climate oscillations. The signal in the carbon isotopes gives evidence of drastic and rapid vegetation changes in western Europe, an important site in human cultural evolution. We also find evidence for a long phase of extremely cold climate in southwest France between 61.2 +/- 0.6 and 67.4 +/- 0.9 kyr ago.  相似文献   

17.
Nyberg J  Malmgren BA  Winter A  Jury MR  Kilbourne KH  Quinn TM 《Nature》2007,447(7145):698-701
Hurricane activity in the North Atlantic Ocean has increased significantly since 1995 (refs 1, 2). This trend has been attributed to both anthropogenically induced climate change and natural variability, but the primary cause remains uncertain. Changes in the frequency and intensity of hurricanes in the past can provide insights into the factors that influence hurricane activity, but reliable observations of hurricane activity in the North Atlantic only cover the past few decades. Here we construct a record of the frequency of major Atlantic hurricanes over the past 270 years using proxy records of vertical wind shear and sea surface temperature (the main controls on the formation of major hurricanes in this region) from corals and a marine sediment core. The record indicates that the average frequency of major hurricanes decreased gradually from the 1760s until the early 1990s, reaching anomalously low values during the 1970s and 1980s. Furthermore, the phase of enhanced hurricane activity since 1995 is not unusual compared to other periods of high hurricane activity in the record and thus appears to represent a recovery to normal hurricane activity, rather than a direct response to increasing sea surface temperature. Comparison of the record with a reconstruction of vertical wind shear indicates that variability in this parameter primarily controlled the frequency of major hurricanes in the Atlantic over the past 270 years, suggesting that changes in the magnitude of vertical wind shear will have a significant influence on future hurricane activity.  相似文献   

18.
Slowdown of the meridional overturning circulation in the upper Pacific Ocean   总被引:44,自引:0,他引:44  
McPhaden MJ  Zhang D 《Nature》2002,415(6872):603-608
Decadal temperature fluctuations in the Pacific Ocean have a significant effect on marine ecosystems and the climate of North America. The physical mechanisms responsible for these fluctuations are poorly understood. Some theories ascribe a central role to the wind-driven meridional overturning circulation between the tropical and subtropical oceans. Here we show, from observations over the past 50 years, that this overturning circulation has been slowing down since the 1970s, causing a decrease in upwelling of about 25% in an equatorial strip between 9 degrees N and 9 degrees S. This reduction in equatorial upwelling of relatively cool water, from 47 x 10(6) to 35 x 10(6) m3 s(-1), is associated with a rise in equatorial sea surface temperatures of about 0.8 degrees C. Another effect of the slowing circulation is a reduction in the outgassing of CO2 from the equatorial Pacific Ocean-at present the largest oceanic source of carbon dioxide to the atmosphere.  相似文献   

19.
Raisbeck GM  Yiou F  Cattani O  Jouzel J 《Nature》2006,444(7115):82-84
An ice core drilled at Dome C, Antarctica, is the oldest ice core so far retrieved. On the basis of ice flow modelling and a comparison between the deuterium signal in the ice with climate records from marine sediment cores, the ice at a depth of 3,190 m in the Dome C core is believed to have been deposited around 800,000 years ago, offering a rare opportunity to study climatic and environmental conditions over this time period. However, an independent determination of this age is important because the deuterium profile below a depth of 3,190 m depth does not show the expected correlation with the marine record. Here we present evidence for enhanced 10Be deposition in the ice at 3,160-3,170 m, which we interpret as a result of the low dipole field strength during the Matuyama-Brunhes geomagnetic reversal, which occurred about 780,000 years ago. If correct, this provides a crucial tie point between ice cores, marine cores and a radiometric timescale.  相似文献   

20.
Thomas DJ 《Nature》2004,430(6995):65-68
The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号