首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2012年选取与气象站点相邻的一个环境空气质量测点对PM2.5进行了研究性监测,测点距地面23m,全年PM2.5质量浓度在19~284μg/m3之间,年均质量浓度为89μg/m3,月均质量浓度最高的为1月.系统分析全年PM2.5监测质量浓度与相邻气象测点灰霾、能见度观测数据之间的关系,得到以下结论:宜昌市城区PM2.5污染质量浓度与灰霾观测值相关性不强,但与能见度的观测值显著相关;全年能见度降低受PM2.5污染的影响具有季节性,2、5~6三个月与7~9三个月及4、10~11三个月,这3组月份内的PM2.5与能见度之间的回归曲线基本一致,全年中3月份影响最大,而1月份最小,主要与气温、风速、降雨因素有关.  相似文献   

2.
为进一步理解南京地区大气复合污染现状,对2013-2016年南京市9个自动空气质量监测站点的夏季臭氧(O3)和细颗粒物(PM2.5)数据进行分析,分别探讨两者的时空分布特征,并探求两者之间的相关关系。结果表明:①O3的质量浓度处于上升状态,从2013-2016年南京市夏季臭氧平均浓度依次为58.1、65.8、79.3、81.8μg/m3,年均浓度增长率为8.45μg/m3,与之相反,PM2.5的污染程度明显好转,夏季平均浓度依次为45.2、65.7、38.5、31.2μg/m3,其中,2014年出现的高值与当年的气象条件有着密切联系;②O3的日变化特征为单峰型,一般在下午3点出现一天中的最大值,PM2.5的日变化呈现出不太明显的“W”型,两个谷值一般出现在凌晨和傍晚;③臭氧超标情况下的PM2.5浓度远远大于不超标情况下的PM2.5浓度,表明O3可以通过增强大气氧化性造成PM2.5质量浓度升高,两种情况下O3和PM2.5的相关系数的不同也进一步表明了这一点。  相似文献   

3.
近年来,高浓度颗粒物所带来的霾污染在南通市经常发生,但已有文献对其关注较少。文章以南通市区5个大气环境监测站点发布的小时数据为基础,运用数理统计法详细分析了2014—2018年PM2.5浓度在不同时间尺度上呈现出的特征和变化规律。结果表明:1)年尺度上,5年间南通市区PM2.5平均质量浓度总体呈下降趋势,但逐年值均超过国家Ⅱ级污染限值,超出率为11%~74%,表明城市雾霾污染仍不可忽视。2)季节和月变化上,南通市区的PM2.5质量浓度为“冬季最高,春季次之,夏、秋两季最低”。除此之外,冬季污染日出现多,占全部污染日的54%,这反映出南通市区雾霾污染在冬季不仅污染严重且发生率高。在60个月份中,75%的月均值超过35μg/m3。3)日变化上,PM2.5日质量浓度概率密度曲线表明,南通市区出现频率最高的PM2.5日质量浓度为20~40μg/m3,表明大部分时段空气质量是优良状态;在24时刻内,PM2.5质量浓度变化呈“双峰型”曲线,上午9:00前后和晚间10:00前后污染最重,下午4:00污染最轻。从影响因素看,南通市区PM2.5污染特征与其地理位置及天气条件、人类活动污染排放等多种因素相关,尤其是地方特定的湿度环境有可能加剧霾污染程度。  相似文献   

4.
北京市2014年大气污染物空间分布特征分析   总被引:1,自引:0,他引:1  
基于地理信息系统ArcGIS 10.2平台,采用反距离权重空间插值模型对2014年北京市35个环境质量监测点监测到的主要大气污染物:一氧化碳(CO)、二氧化氮(NO2)、臭氧(O3)、可吸入颗粒物(PM10)、细颗粒物(PM2.5)和二氧化硫(SO2)质量浓度年均值的变化规律及空间分布特性进行了分析.结果表明,在质量浓度分布上,2014年北京市CO、NO2、SO2、O3、PM10、PM2.5这6类大气污染物的质量浓度分别位于1~3 mg/m3、17.22 ~ 105.4 μg/m3、14.27~25.75 μg/m3、27~ 81μg/m3、76 ~ 179 μg/m3、67 ~ 123 μg/m3范围内.由此可知,北京市2014年大气污染物年均质量浓度除PM10和PM2.5外的其余污染物质量浓度并不高,都在轻度污染范围之内;在空间分布上,除O3质量浓度空间分布上呈现出北高南低的特征外,其余污染物均呈现南部、中部质量浓度较高,北部地区质量浓度较低的特征.  相似文献   

5.
由于2012~2013年北京大气环境质量整体较差,且多天的PM2.5日均浓度值超过0.500 mg/m3。鉴于此,为了解大气污染期间住宅室内外PM2.5的浓度水平,于2014年4~5月对北京市内4所住宅A、B、C和D的室内外PM2.5浓度分别进行了随时间变化的同步测试,并对其浓度水平及影响室内PM2.5的因素进行了分析。结果表明:(1)测试期间4所住宅中,B、C和D住宅室内外PM2.5的平均浓度均高于0.075 mg/m3,室外PM2.5平均浓度分别为0.143 mg/m3、0.122 mg/m3和0.124 mg/m3,室内PM2.5平均浓度分别为0.129 mg/m3、0.089 mg/m3和0.104 mg/m3;(2)在室内无明显污染源或污染源强度相对较低时,较高的室外PM2.5浓度对室内PM2.5浓度水平起主导影响;(3)吸烟和烹饪对室内PM2.5浓度影响较大,开、关窗时间及室外PM2.5浓度水平影响室内PM2.5的衰减时间;(4)北京市朝阳区2014年测试的住宅A、B和2015年同期测试的住宅Z1的室外PM2.5平均浓度分别为0.037 mg/m3、0143 mg/m3和0.028 mg/m3,2014年开始实施的《北京市大气污染防治条例》使2015年北京市室外空气质量有所改善。  相似文献   

6.
以2017年PM2.5污染较为严重的贵州六盘水市为研究对象,分析PM2.5的月变化与季变变,探讨PM2.5污染来源与各个因子之间的关系。通过PM2.5与平均气温的相关性分析、PM2.5与平均植被指数的相关性分析,以月、季为时间尺度对六盘水市5的监测点(PM2.5)进行浓度变化分析。得出时间上六盘水市大气中PM2.5浓度变化具有季节性,季平均气温与季平均PM2.5呈负相关,各监测点(PM2.5)在冬季最高,各监测点平均PM2.5浓度达到55.16μg/m3,夏季最低为22.59μg/m3。季PM2.5浓度变化与季平均植被指数呈现负相关,植被覆盖的变化对大气PM2.5浓度变化有显著影响,在土地利用类型中耕地与领地的植被指数变化最大,土地利用类型当中的耕地与林地对大气中PM2.5浓度变化有显著影响。  相似文献   

7.
大气细颗粒物是严重危害人体健康的主要污染物之一.该文以湖北省为例,采用LUR(土地利用回归)模型对各监测站点的PM2.5浓度进行空间化模拟,并考察污染暴露强度的空间分异特征,为PM2.5污染分区防控提供参考依据.结果表明:1)湖北省各站点PM2.5浓度差异较大,平均浓度高于环境空气质量二级标准,浓度大小受到站点风速、气温、海拔与3 km缓冲区内绿地面积等因子的显著影响,风速升高会加重污染,后3个因子增加则有利于降低污染.2)基于LUR模型的空间化结果显示,PM2.5浓度在省域尺度上呈现出明显的“中部高、东部低、西部最低”的梯度差序特征,其中武汉城市圈、江汉平原与襄阳部分地区污染较重,鄂西地区普遍较低.3)构建顾及人口分布疏密的PM2.5暴露强度指数,发现PM2.5暴露强度与人口密度大小存在较高的空间相关性.全省超过90%的人口和面积处于中等及以下暴露强度,总体健康风险较低.暴露高值区相对分散,主要集中在以武汉城市圈为核心的中东部地区.  相似文献   

8.
针对广西地区PM2.5污染情况,利用广西气象站数据通过反距离加权插值得到广西地区空气质量监测站的气象数据,然后结合空气质量监测站数据及其气象数据插值结果建立地理加权回归张力样条函数(geographically weighted regression-tension splinefunction,GWR-TSF)插值模型,并用该模型进行广西PM2.5浓度插值分析.研究结果表明,GWR-TSF模型的PM2.5浓度插值效果较好,其均方根误差为2.34μg/m3,较普通克里金(ordinary Kriging,OK)模型和地理加权回归(GWR)模型分别提高了20.68%和25.71%;而平均绝对误差为2.13 μg/m3,较OK模型和GWR模型分别提高了20.22%和11.62%,对区域PM2.5监测预警具有一定的参考价值.  相似文献   

9.
为探究天津蓟县大气细颗粒物(PM2.5)污染特征及气象因素对它的影响,搜集了2013年蓟县PM2.5质量浓度变化资料,对PM2.5污染情况进行了详细分析;并针对夏季典型天气,对PM2.5质量浓度进行监测,结合同步气象数据,运用线性回归及相关性分析方法研究PM2.5质量浓度与气象因素关系.结果表明:蓟县PM2.5质量浓度呈现明显冬高夏低特征,夏季污染超标率达45%,其日变化呈明显双峰型;PM2.5质量浓度受温度、相对湿度、风速、风向、降雨影响显著,与气压无显著关系,能见度随PM2.5质量浓度增大呈现e指数衰减规律.研究结果可为当前的京津冀区域大气污染协同防控提供一定的科学参考.  相似文献   

10.
选择位于白山市六道沟镇山区典型的硅藻土矿点及晾坯场,采用野外现场监测结合健康风险评价的分析方法,研究了硅藻土矿点和晾坯场内工况条件下PM 2.5和PM 10的浓度特征,依据WHO环境空气准则值、美国和中国AQI指数对硅藻土矿点和坯场进行了健康风险评估.结果表明:静态工况时,矿点内PM 2.5浓度均值是(30.2±0.53)μg/m~3,PM 10的浓度均值是(152.47±0.46)μg/m~3;坯场PM 2.5浓度均值是(32.4±0.32)μg/m~3,PM 10浓度均值是(79.7±0.69)μg/m~3.动态工况时,矿点PM 2.5和PM 10的均值分别为(197.4±32.5)μg/m~3和(3 055.4±205.6)μg/m~3;坯场PM 2.5和PM 10的均值分别为(139±44.6)μg/m~3和(2 195.4±135.2)μg/m~3.矿区颗粒物暴露水平,静态工况时,矿点PM 2.5和PM 10分别为30.2μg/m~3和152.5μg/m~3,坯场PM 2.5和PM 10分别为32.4μg/m~3和79.7μg/m~3;动态条件时,矿点PM 2.5和PM 10分别为98.7μg/m~3和1 527.7μg/m~3,坯场PM 2.5和PM 10分别为69.5μg/m~3和1 097.7μg/m~3.环境健康风险评价结果表明:动态工况时(短期暴露),矿点和坯场PM 10和PM 2.5浓度远超IT-1目标;矿点和坯场PM 10的AQI指数均已超出指数上限(爆表),而PM 2.5的AQI指数也依次为很不健康和不健康、重度污染和中度污染.静态工况时(较长期暴露),矿点和坯场PM 2.5浓度实现IT-3目标,矿点PM 10小于IT-2,坯场PM 10高于IT-1;矿点和坯场PM 2.5和PM 10的AQI指数分别为二级(适中)和三级(轻度污染)、二级(良).  相似文献   

11.
基于对天津市23个自动空气质量监测站点的SO_2、NO_2、PM_(10)、PM_(2.5)、CO和O_3监测数据进行分析,掌握了2014年12月1日-2015年11月30日期间各项污染物的时空分布特征,并选取主要污染物分析其时间变化特征和空间分布特征.采用Kriging方法对6项污染物进行分析,获取天津市大气污染物的空间插值分布图.研究结果表明,天津市PM_(10)质量浓度年均值为113μg/m~3,PM_(2.5)年均值为69μg/m~3,均超过二级标准;颗粒物质量浓度呈现明显的季节变化特征,PM_(2.5)浓度季均值从高到低依次为冬季(95μg/m~3)、秋季(64μg/m~3)、春季(63μg/m~3)、夏季(54μg/m~3);站点对比结果表明团泊洼站点污染最严重,而塘沽环保局优良率最高.从空间分布来看,PM_(10)、PM_(2.5)、SO_2、NO_2均表现出中部至南部区域为高值分布区域,说明天津市本地污染排放对大气环境污染的贡献为主要影响因素;而O_3和CO均表现为市区浓度较低而天津市南北区域形成高值且呈现相反分布.  相似文献   

12.
目的 探究COVID-19疫情防控期间PM2 .5和O3 浓度变化的潜在影响因素.方法 利用湖北省25个自动监测站点2015-2020年(1-3月)的PM2 .5 ,O3 以及相关大气污染物浓度数据,在对其进行空间插值的基础上,分析湖北省市域尺度PM 2 .5和O3 浓度数据空间演变,并结合气象资料和大气污染数据进行相关性分析,重点研究影响疫情防控期间PM2 .5和O3 时空分异特征的气象因素及经济因素.结果与结论 (1)湖北省13个市(州)PM2 .5浓度在疫情期间为近6 a来最低水平;其中,2月份荆门(57 μg/m3 ) 、荆州(42 μg/m3 ) 、随州(46 μg/m3 )和襄阳(59 μg/m3 )同比降幅最大,分别为38 .7%, 40%,39 .5% 及41 .6%;(2)疫情期间近地面O3 浓度有上升趋势,整体表现为1月波动,2月上升,3月下旬达到峰值,除荆州和宜昌外,其他市(州)浓度增长率均超过20%;(3 )从空间变化差异来看,湖北省PM2 .5和O3 浓度呈中部高、东部较低、西部最低的分布规律;(4)相关性分析表明,湖北省防疫期间生产制造业的停摆与PM2 .5的下降呈正相关;近地面O3 浓度的上升与PM2 .5等颗粒物的减少以及形成臭氧所需的前体物活跃度上升有关.  相似文献   

13.
目的为了科学有效保护地保护秦俑,研究遗址区室内空气工作势在必行。方法通过夏季在秦俑馆采集气溶胶进行分析。结果0.3~0.7μm范围内的气溶胶PM2.5、TSP浓度随游客的增加而增加;室内PM2.5和TSP平均浓度分别为108.4μg/m3和172.4μg/m3,PM2.5占TSP总质量的62.9%。进一步分析证实硫酸盐、有机物及地壳矿物是室内PM2.5的主要组成部分,分别占(32.4±6.2)%、(27.7±8.0)%,(12.5±3.4)%。元素碳、铵盐、硝酸盐分别占室内PM2.5的(3.9±1.5)%,(8.9±2.8)%,(7.0±2.9)%;高含量的硫酸盐、有机物、元素碳、硝酸盐及铵盐的粒径在0.43~3.3μm之间,根据离子平衡计算显示出室内气溶胶酸性特征。结论为科学、有效地控制室内环境,保护秦俑提供了重要依据。  相似文献   

14.
2018年3月9日~14日天津市津南区出现了一次持续性空气污染过程,利用津南区PM2.5质量浓度观测资料和地面气象要素观测数据,从天气形势和气象要素2方面对此次重污染过程进行分析。结果表明,此次持续性污染过程PM2.5质量浓度达271μg/m3,以细颗粒污染物为主;高空主要为高压脊前偏西风或平直的西风气流,低层受西南风控制;地面位于高压后部或低压前部,西南风不断将污染物从河北中南部向津南区输送。分析认为,高相对湿度、低风速和较低的混合层高度是造成此次持续性污染天气过程的主要气象要素,其中PM2.5质量浓度与混合层高度具有负相关。  相似文献   

15.
卫星观测不仅能反映全球尺度的大气污染状况,也能从城市等区域尺度上监测大气污染物的变化.本文基于2004-2013年MODIS气溶胶标准产品,利用PM_(2.5)卫星遥感估算的统计模型,统计分析了郑州地区的PM_(2.5)质量浓度的年际及季节变化特点,有助于深入研究郑州地区细颗粒物污染水平变化.研究发现,在空间上,郑州地区PM_(2.5)高值区主要集中在郑州市市辖区、中牟县、新郑市、荥阳市以及巩义市西北等地区,低值区主要分布于登封市和巩义市南部的山地地区.在时间上,2004-2011年整个郑州地区PM_(2.5)质量浓度总体呈现逐年增长的趋势,直到2011年达到峰值(108.59μg/m3).2011年之后,该地区PM_(2.5)污染状况有所好转,但仍处于重度污染状态.季节变化方面,PM_(2.5)高值通常出现在冬季(149.28μg/m3),秋季次之,春、夏季该地区PM_(2.5)质量浓度较低(81.71μg/m3).研究结果表明,利用卫星数据可以有效地分析郑州地区的PM_(2.5)时空分布特征,为该地区的PM_(2.5)污染治理提供有力的数据和技术支撑.  相似文献   

16.
使用香港元朗地区2008年MODIS卫星遥感的气溶胶光学厚度(AOD)产品、激光雷达气溶胶消光系数垂直分布、地面相对湿度和地面气溶胶浓度观测资料等数据,通过激光雷达数据建立地面消光系数和激光雷达AOD与气溶胶标高的关系,利用这一关系和卫星AOD进行地面消光系数的反演估计,并进行湿度订正;通过建立地面气溶胶浓度和地面消光系数的关系,进行卫星AOD产品和激光雷达气溶胶探测反演地面大气颗粒物质量浓度的研究及应用。结果表明,卫星估计的地面消光系数与小时平均的颗粒物质量浓度观测值的相关系数为0.57~0.86(PM2.5)和0.59~0.78(PM10),估计的质量浓度与小时平均的观测值对比的均方根偏差分别为11.64~25.34μg/m3(PM2.5)和24.64~91.64μg/m3(PM10),表明可以通过卫星遥感进行大气悬浮颗粒物污染的监测应用。其中1 km分辨率的AOD产品,因其更高的空间分辨率,更适合反映具有复杂地形的城市地区大气悬浮颗粒物污染。  相似文献   

17.
采集了某铀尾矿库区夏季大气颗粒物(TSP、PM2.5),检测分析了颗粒物质量浓度及铀、重金属(Pb、Cd、Cu)含量,结果表明:TSP的质量浓度为53.9μg/m3,PM2.5的质量浓度为28.0μg/m3,TSP与PM2.5的质量浓度的相关系数R=0.832 2;TSP中铀的含量为0.078μg/m3,PM2.5中铀的含量为0.025 6μg/m3;TSP中Pb、Cd、Cu的含量分别为0.111 2μg/m3、0.014 9μg/m3、0.179 7μg/m3,PM2.5中Pb、Cd、Cu的含量分别为0.063 9μg/m3、0.007 4μg/m3、0.038 1μg/m3;TSP中重金属含量由高到低的顺序是Cu>Pb>Cd,PM2.5中重金属含量由高到低的顺序是Pb>Cu>Cd。  相似文献   

18.
利用2018年1月、4月、7月、10月郑州市城区8个监测站点的PM_(2.5)和PM_(10)浓度数据与气象数据,对郑州市城区PM_(2.5)和PM_(10)的时相变化特征及气象要素对其产生的影响进行研究.结果表明:郑州市城区在1月份的PM_(2.5)浓度最高(118.1μg·m~(-3)),污染严重,4月份PM_(10)浓度最高(169.4μg·m~(-3)).通过分析PM_(2.5)和PM_(10)的比值(PM_(2.5)/PM_(10))发现, PM_(2.5)是郑州市城区主要的大气污染物.PM_(2.5)和PM_(10)与气象要素之间的相关分析表明,PM_(2.5)和PM_(10)与气温和露点温度均呈显著负相关(P0.01),PM_(10)与降水呈显著负相关(P0.05),PM_(2.5)与气温之间的相关性(r=-0.441,P0.01)高于PM_(10)和气温的相关性(r=-0.311,P0.01).另外,当风速在2~3 m·s~(-1)时,PM_(10)最低;而风速大于4 m·s~(-1)时,颗粒物浓度增加明显,且对于PM_(10)的增加作用更显著.露点温度与颗粒物浓度之间也存在一定关系,当露点温度大于0℃时,颗粒物浓度会随露点温度的增加而降低.2018年郑州市PM_(2.5)与PM_(10)昼夜变化呈双峰型特征;风速与温度的双重作用导致PM_(2.5)浓度先于PM_(10)达到最高值,而空气湿度和露点温度则是造成04:00时颗粒物较低的主要原因.另外,通过多元回归分析发现,各月份昼夜时段颗粒物浓度主要受温度和相对湿度影响;在各时段中,温度与颗粒物浓度关系最为密切,风速次之,湿度最弱,各气象要素对PM_(2.5)浓度的影响较PM_(10)浓度更大.  相似文献   

19.
广州夏季大气中碳气溶胶浓度水平及污染特征   总被引:13,自引:0,他引:13  
2002年6-7月于广州市3个采样点采集PM10和PM25样品,测定了PM10,PM25以及元素碳(EC)和有机碳(OC)的浓度.PM10和PM2.5平均浓度分别为124.77μg@m-3及78.13μg@m-3.PM10和PM2.5中的OC浓度分别为22.3μg@m-3和15.80μg@m-3,EC浓度分别为7.78和5.90μg@m-3,其中73.8%的OC和77.7%的EC存在于PM25中.在3个采样点PM10和PM25中,OC/EC比值均大于2.0,表明广州夏季大气存在二次污染.各种气象条件对OC、EC浓度及其比值的变化都有不同程度的影响,其中降水和风速是OC、EC浓度变化的主要气象因素.  相似文献   

20.
刘妍妍 《江西科学》2021,39(5):893-900
针对2021年春节期间(2月11—17日)湖南省发生的一次PM2.5重污染过程,利用湖南省内组分站和复合监测站水溶性离子分析仪、碳组分分析仪、无机元素分析仪等分析了PM2.5的化学组成,对颗粒物主要成分进行了来源解析,并结合气象综合分析了此次重污染的过程和成因.监测结果显示,此次重污染过程中PM2.5最高日均质量浓度达184μg/m3,超标1.45倍;烟花爆竹集中燃放期间,全省PM2.5浓度平均升高了2.3倍,各城市PM2.5小时峰值浓度较初始浓度分别增高2.7~11.2倍.重污染期间硫酸盐是PM2.5的主要组分,最高可达24.8%;此次重污染是受烟花爆竹燃放叠加高湿静稳、逆温、小风等不利气象条件的影响而引起空气质量的恶化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号