首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure of the as-cast 2D70 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 2D70 aluminum alloy mainly consists of the dendritic network of aluminum solid solution and intermetallic compounds (Al2CuMg, Al2Cu, Al9FeNi, Cu2FeAl7, and Al7Cu4Ni). After conventional homogenization, Al/Al2CuMg eutectic phases are dissolved into the matrix, and a small amount of high melting-point eutectic Al/Al2Cu phases exist in the matrix, resulting in an increase in the starting melting temperature. Under double homogenization, the high melting point Al/Al2Cu phases are dissolved, and no obvious change is observed for the size and morphology of Al9FeNi, Cu2FeAl7, and Al7CuaNi compounds.  相似文献   

2.
利用感应加热原理,使用功率为0~60 kW且连续可调的高频感应加热设备,完成Cu-Al合金板材的焊接,研究焊接件的界面形貌、元素分布及界面物相分析.分析加热电流和加热时间对界面形貌和结合强度的影响.采用ZWICK-Z050电子万能材料试验机测试界面结合强度,采用扫描电子显微镜和偏光显微镜观察界面形貌,用X射线衍射仪进行物相分析.结果表明:界面中间化合物主要为Al2Cu,Cu9Al4和CuAl相,其中Cu侧主要是Cu9Al4和CuAl相,Al侧主要是Al2Cu相;随着加热电流的增大或加热时间的延长,Cu-Al界面结合层由不平整变为平整,且宽度逐渐增大,同时Cu-Al界面结合强度先增大后减小.感应加热焊接试样界面结合强度可达53 MPa,结合良好.  相似文献   

3.
Al_(86)Ni_6Y_(4.5)Co_2La_(1.5) amorphous powders were synthesized by mechanical alloying for 200 h. Subsequent consolidation was performed via spark plasma sintering in the temperature range of 250 ℃ to 500 ℃ at the pressure of 500 MPa. The role of viscous flow on densification was investigated by studying the viscosity change of the amorphous phase at different consolidation temperatures. The decrease in viscosity at higher sintering temperatures resulted in better particle bonding and densification of consolidated samples. The formation of only FCC Al was observed in the consolidated samples at sintering temperatures ≤ 300 ℃ and the intermetallic phases formed at temperatures ≥ 400 ℃. The mechanical properties of the bulk samples were measured by Vickers microhardness and nanoindentation tests. The testing results showed that the average values of microhardness, nanohardness and elastic modulus of the sample consolidated at 500 ℃ were 3.06 ± 0.14 GPa,4.85 ± 1.14 GPa and 89.53 ± 9.25 GPa, respectively. The increase in hardness and elastic modulus of the higher temperature consolidated samples is attributed to the improvement in particle bonding, densification and distribution of various hard intermetallic phases in the amorphous matrix.  相似文献   

4.
Al2O3 –TiC/TiCN–Fe composite powders were successfully prepared directly from ilmenite at 1300–1400℃.The effects of Al/C ratio,sintering atmosphere,and reaction temperature and time on the reaction products were investigated.Results showed that the nitrogen atmosphere was bene cial to the reduction of ilmenite and the formation of Al2O3 –TiC/TiCN–Fe composite powders.When the reaction temperature was between 600 and 1100℃,the intermediate products,TiO2,Ti3O5 and Ti4O7 were found,which changed to TiC or TiCN at higher temperature.Al/C ratio was found to affect the reaction process and synthesis products.When Al addition was 0.5 mol,the Al2O3 phase did not appear.The content of carbon in TiCN rose when the reaction temperature was increased.  相似文献   

5.
The Al-Al2O3-MgO composites with added aluminum contents of approximately 0wt%, 5wt%, and 10wt%, named as M1, M2, and M3, respectively, were prepared at 1700℃ for 5 h under a flowing N2 atmosphere using the reaction sintering method. After sintering, the Al-Al2O3-MgO composites were characterized and analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The results show that specimen M1 was composed of MgO and MgAl2O4. Compared with specimen M1, specimens M2 and M3 possessed MgAlON, and its production increased with increasing aluminum addition. Under an N2 atmosphere, MgO, Al2O3, and Al in the matrix of specimens M2 and M3 reacted to form MgAlON and AlN-polytypoids, which combined the particles and the matrix together and imparted the Al-Al2O3-MgO composites with a dense structure. The mechanism of MgAlON synthesis is described as follows. Under an N2 atmosphere, the partial pressure of oxygen is quite low; thus, when the Al-Al2O3-MgO composites were soaked at 580℃ for an extended period, aluminum metal was transformed into AlN. With increasing temperature, Al2O3 diffused into AlN crystal lattices and formed AlN-polytypoids; however, MgO reacted with Al2O3 to form MgAl2O4. When the temperature was greater than (1640 ±10)℃, AlN diffused into Al2O3 and formed spinel-structured AlON. In situ MgAlON was acquired through a solid-solution reaction between AlON and MgAl2O4 at high temperatures because of their similar spinel structures.  相似文献   

6.
The effects of homogenization on dissolution and precipitation behaviors of intermetallic phase in a novel Zr and Er containing Al-Zn-Mg-Cu alloy were investigated.In this work,single-stage(SS:475℃/24 h) and doublestage(DS:400℃/12 h+475℃/24 h) homogenization treatments were carried out for the ingots with the heating rates of 300℃/h,50℃/h and 25℃/h,respectively.It was found that Er tended to segregate at the grain boundary in the form of Al_8Cu_4Er,and the formation mechanism was determined to be the eutectic reaction in the front of the solid/liquid interface during solidification.Also,Al_8Cu_4Er phase was detected to possess high melting point(~573.8℃),which fully remained after the homogenization.Meanwhile,a significant impact of heating rate on the dissolution of intermetallic phases for the studied alloy under the DS homogenization was determined,but little impact was observed under the SS homogenization.Morever,the size and distribution of the dispersoids after homogenization were fully analyzed.It was found that slow heating rates was helpful to refine the particles size,and increase the density as well as volume fraction of the precipitation under both SS and DS homogenization.However a higher density and volume fraction of the precipitated particles,and a relatively larger average particle size were gained with DS homogenization.  相似文献   

7.
Bulk Al/Al3Zr composite was prepared by a combination of mechanical alloying (MA) and hot extrusion processes. Elemental Al and Zr powders were milled for up to 10 h and heat treated at 600℃ for 1 h to form stable Al3Zr. The prepared Al3Zr powder was then mixed with the pure Al powder to produce an Al-Al3Zr composite. The composite powder was finally consolidated by hot extrusion at 550℃. The mechanical properties of consolidated samples were evaluated by hardness and tension tests at room and elevated temperatures. The results show that annealing of the 10-h-milled powder at 600℃ for 1 h led to the formation of a stable Al3Zr phase. Differential scanning calorimetry (DSC) results confirmed that the formation of Al3Zr began with the nucleation of a metastable phase, which subsequently transformed to the stable tetragonal Al3Zr structure. The tension yield strength of the Al-10wt%Al3Zr composite was determined to be 103 MPa, which is approximately twice that for pure Al (53 MPa). The yield stress of the Al/Al3Zr composite at 300℃ is just 10% lower than that at room temperature, which demonstrates the strong potential for the prepared composite to be used in high-temperature structural applications.  相似文献   

8.
The microstructure and electrochemical properties of Al–Cu–Fe alloys with the atomic compositions of Al_(65)Cu_(20)Fe_(15),Al_(78)Cu_7Fe_(15)and Al_(80)Cu_5Fe_(14)Si_1have been studied.The alloys were produced by induction melting of pure elements with copper mold casting.The microstructure of the alloys was analyzed by X-ray diffraction and high-resolution transmission electron microscopy.The formation of quasicrystalline phases in the Al–Cu–Fe alloys was confirmed.The presence of intermetallic phases was observed in the alloys after crystallization in a form of ingots and plates.The electrochemical measurements were conducted in 3.5%NaCl solution.The electronic structure of the alloys was determined by X-ray photoelectron spectroscopy.The post corrosion surface of the samples was checked using a scanning electron microscope equipped with the energydispersive X-ray detector.It was observed that the Al_(65)Cu_(20)Fe_(15)alloy had the highest corrosion resistance.The improved corrosion resistance parameters were noted for the plate samples rather than those in the as-cast state.And the hardness of the Al_(65)Cu_(20)Fe_(15)alloy was significantly higher than the other alloy samples.  相似文献   

9.
Cordierite-and anorthite-based binary glass ceramics of the CaO-MgO-Al2O3-SiO2 (CMAS) system were synthesized by mixing local and abundant raw minerals (kaolin and doloma by mass ratio of 82/18). A kinetics study reveals that the activation energy of crystallization (Ea) calculated by the methods of Kissinger and Marotta are 438 kJ·mol-1 and 459 kJ·mol-1, respectively. The Avrami parameter (n) is estimated to be approximately equal to 1, corresponding to the surface crystallization mechanism. X-ray diffraction (XRD) analysis shows that the anorthite and cordierite crystals are precipitated from the parent glass as major phases. Anorthite crystals first form at 850℃, whereas the μ-cordierite phase appears after heat treatment at 950℃. Thereafter, the cordierite allotropically transforms to α-cordierite at 1000℃. Complete densification is achieved at 950℃; however, the density slightly decreases at higher temperatures, reaching a stable value of 2.63 kg·m-3 between 1000℃ and 1100℃. The highest Vickers hardness of 6 GPa is also obtained at 950℃. However, a substantial decrease in hardness is recorded at 1000℃; at higher sintering temperatures, it slightly increases with increasing temperature as the α-cordierite crystallizes.  相似文献   

10.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

11.
采用光学金相显微镜、扫描电子显微镜及能谱分析、电导率等检测手段,对铸态和均匀化态的2219合金微观组织、第二相分布及电导率进行研究分析。结果表明,2219合金铸态组织存在着枝晶偏析,在晶界上聚集大量的Al2Cu相,并有长条状的脆性相Al7Cu2(Fe、Mn)穿插在晶界上。经525 ℃均匀化处理22 h后,晶界上Al2Cu相回溶到基体中,枝晶网络被破坏,枝晶偏析消除,Cu元素从晶界到晶内的分布趋于平稳;处于亚稳态的溶质原子从过饱和固溶体中析出,在晶内呈细小、弥散地分布,基体溶质原子固溶度降低,电子散射作用减弱,电导率提高10 %IACS。  相似文献   

12.
Porous TiAl3 intermetallics were synthesized from Ti-75 at.% Al elemental powder mixtures using an energy-saving and rapid reactive method of thermal explosion (TE). The results demonstrated that the actual temperature of the compact climbed rapidly from 673 °C to 1036 °C within 24 s, indicating that an obvious TE reaction occurred during sintering process. The video graphs suggested that the TE in Ti–Al system behaved instant occurrence and overall heating whether from axial or radial direction. The silver wires and NaCl particles that pressed on the surface of the sample disappeared due to the heavy heat released during TE reaction. Only pure TiAl3 phases were synthesized in TE products and the open porosity of 55.4% was easy to obtain. After high-temperature treatment at 1000 °C, large amounts of sintering-neck formed and then improved the compressive strength of porous TiAl3 materials. Moreover, the mass gain curve of porous TiAl3 intermetallics oxidized at 650 °C for 120 h exhibited the parabolic oxidation rate law. XPS analysis confirmed that the strong O 1s peak was 531.4 eV which was the typical binding energy of Al2O3. Therefore, the excellent oxidation resistance of porous TiAl3 foams would be considered as good candidate materials for prolonging the service life at high temperatures.  相似文献   

13.
This research aims to study the significance of Gd addition (0wt%-2wt%) on the microstructure and mechanical properties of Mg-9Al alloy. The effect of Gd addition on the microstructure was investigated via X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The Mg-9Al alloy contained two phases, α-Mg and β-Mg17Al12. Alloying with Gd led to the emergence of a new rectangular-shaped phase, Al2Gd. The grain size also decreased marginally upon Gd addition. The ultimate tensile strength and microhardness of Mg-9Al alloy increased by 23% and 19%, respectively, upon 1.5wt% Gd addition. We observed that, although Mg-9Al-2.0Gd alloy exhibited the smallest grain size (181 μm) and the highest dislocation density (5.1×1010 m-2) among the investigated compositions, the Mg-9Al-1.5Gd alloy displayed the best mechanical properties. This anomalous behavior was observed because the Al2Gd phase was uniformly distributed and present in abundance in Mg-9Al-1.5Gd alloy, whereas it was coarsened and asymmetrically conglomerated in Mg-9Al-2.0Gd.  相似文献   

14.
The 0.1 mol% Er^3+ and 0-2 mol% Yb^3+ codoped Al2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped Al2O3 phase, γ-(Al,Er, Yb)2O3 and θ-(Al,Er, Yb)2O3, was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb^3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er^3+ and 0.5 mol% Yb^3+ codoped Al2O3 powders, which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er^3+-yb^3+ codoped Al2O3 powders.  相似文献   

15.
The phase equilibria,diffusion growth and diffusivities in the Ni-Al-Pt system at 1 150,1 200 and 1 250℃were studied using Pt/β-NiAl diffusion couples.Based on the measured concentration profiles coupled with the local equilibrium hypothesis,the tie-lines between neighboring phases were determined.Two intermediate phases,Pt_3Al andα-NiPt(Al),are found to develop between the Pt andβ-NiAl couples.The thicknesses of Pt_3Al andα-NiPt(Al) layers varies linearly with the square of annealing time, indicating th...  相似文献   

16.
Ti3SiC2 has the potential to replace graphite as reinforcing particles in Cu matrix composites for applications in brush,electrical contacts and electrode materials.In this paper the fabrication of Cu-Ti3SiC2 metal matrix composites prepared by warm compaction powder metallurgy forming and spark plasma sintering(SPS) was studied.The stability of Ti3SiC2 at different sintering temperatures was also studied.The present experimental results indicate that the reinforcing particles in Cu-Ti3SiC2 composites are not stable at and above 800℃.The decomposition of Ti3SiC2 will lead to the formation of TiC and/or other carbides and TiSi2.If purity is the major concern,the processing and servicing temperatures of the Cu-Ti3SiC2 composite should be limited to 750℃ or lower.The composites prepared by warm compaction forming and SPS sintering at 750℃ have lower density when compared with the composites prepared by SPS sintering at 950℃,but their electrical resistivity values are very close to each other and even lower.  相似文献   

17.
Molybdenum disulfide (MoS2) is one of the most commonly used solid lubricants for Cu-Fe-based friction materials. Nevertheless, MoS2 reacts with metal matrices to produce metal sulfides (e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS2 for producing Cu-Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites-one with MoS2 (Fe-Cu-MoS2 sample) and the other with FeS (FeS-Cu2S-Cu-Fe-Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS2 reacted with the Cu-Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050℃. The MoS2-Cu-Fe and FeS-Cu2S-Cu-Fe-Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers.  相似文献   

18.
通过拉伸试验、冲击试验以及微观组织观察试验,分析降低Cu含量对喷射成形7055铝合金强度、断裂韧性和微观组织的影响。力学性能试验表明,7055铝合金中Cu的质量分数由2.55%降低到2.17%时,对其强度和伸长率影响不大,但Cu含量降低后合金的断裂韧性显著提高。微观组织分析表明,Cu含量降低前晶界上存在粗大的Al7Cu2Fe相,Cu含量降低后晶界上的粗大析出相明显减少;断口分析表明,Cu含量降低前拉伸断口中存在较多的Al7Cu2Fe第二相,Cu含量降低后Al7Cu2Fe第二相明显减少。  相似文献   

19.
An Al-based composite reinforced with core-shell-structured Ti/Al3Ti was fabricated through a powder metallurgy route followed by hot extrusion and was found to exhibit promising mechanical properties. The ultimate tensile strength and elongation of the composite sintered at 620℃ for 5h and extruded at a mass ratio of 12.75:1 reached 304 MPa and 14%, respectively, and its compressive deformation reached 60%. The promising mechanical properties are due to the core-shell-structured reinforcement, which is mainly composed of Al3Ti and Ti and is bonded strongly with the Al matrix, and to the reduced crack sensitivity of Al3Ti. The refined grains after hot extrusion also contribute to the mechanical properties of this composite. The mechanical properties might be further improved through regulating the relative thickness of Al-Ti intermetallics and Ti metal layers by adjusting the sintering time and the subsequent extrusion process.  相似文献   

20.
To explore and study the Fe-Al system alloy presenting exceptional oxidation resistance at high temperature, the Fe-36Al-0.09C-0.09B-0.04Zr alloy was designed and developed. The microstructure and hardness of the backing at 1250°C were analyzed and measured. Thermodynamics and kinetics of the oxidation behavior were also analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The results show that the microstructure of the Fe-36Al-0.09C-0.09B-0.04Zr alloy is FeAl phase at ambient temperature and is stable at 1250°C. It displays the excellent property of oxidation resistance because the oxide film has only the Al2O3 layer, and its oxidation kinetics curve obeys the parabolic law at 1250°C. The oxidation mechanism at 1250°C is presumed that in the early oxidation period, the alloy oxidizes to form a large number of Al2O3 and a little Fe2O3, then, the enrichment of Al caused by Fe oxidization combines with O to form Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号