首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了一种用于缺电子类烯烃自由基聚合的引发体系,此引发体系使用H2O2和FeCl3两种经济、环保的原料,实现了丙烯酸、甲基丙烯酸等水溶性单体在水中的自由基聚合,同时实现了丙烯腈在水中的连续水相沉淀聚合及在DMSO、DMF中的自由基聚合.结果表明,该引发体系在较低的引发剂浓度和较低的反应温度(30~60℃)下,合成的聚丙烯酸钠分子量在1.0×106~2.0×106之间,聚甲基丙烯酸钠分子量在1.0×105~1.7×105之间,且均具有较低的分子量分布(Mw/Mn=1.1~1.4)和较好的转化率(90%);合成的聚丙烯腈分子量在2.0×104~8.0×104之间,转化率最高可达94.1%.  相似文献   

2.
低分子量聚丙烯酸(钠)的合成及表征   总被引:1,自引:0,他引:1  
采用聚合法合成聚丙烯酸钠,得出制取低分子量聚丙烯酸钠的最适宜条件为:最佳单体浓度应选择100%(以丙稀酸占水重计算);引发剂的适宜浓度为5%(以过硫酸铵质量占水重计算).并讨论了单体浓度及引发剂浓度对聚丙烯酸钠分子量的影响.  相似文献   

3.
采用含少量溶剂的水溶液聚合法合成了超低分子量聚丙烯酰胺.以乙醇为移热溶剂,甲酸钠为链转移剂,过硫酸铵为引发剂,探讨了溶剂、链转移剂、引发剂浓度对聚合物分子量的影响.在单体质量分数为40%,链转移剂浓度为0.12~1.47 mol/L,溶剂浓度为0.87~4.35 mol/L,引发剂浓度为(3.5~17.5)×10-3 mol/L的实验条件下,所获得的聚丙烯酰胺分子量范围为(1.1~8.0)×104.  相似文献   

4.
超低分子量聚丙烯酰胺的水溶液聚合   总被引:9,自引:1,他引:8  
采用水溶液聚合法合成了超低分子量聚丙烯酰胺。探讨了反应温度、单体浓度、链转移剂、引发剂等因素对聚合物分子量的影响。确定了在单体浓度为30.0%,反应温度为80~90℃,链转移剂浓度为(2.0~6.0)×10-2mol/L,引发剂浓度为(3.5~18.0)×10-3mol/L的实验条件下,获得了分子量为(2.6~10.0)×104的聚丙烯酰胺产品。  相似文献   

5.
以9,9'-bixanthydrol (Bixan)为引发剂,在四氢呋喃溶液中于80℃下引发甲基丙烯酸甲酯(MMA)聚合,制得了末端带有引发剂残片的聚合物PMMA-XTOH。1H-NMR分析证实了聚合物链中含有引发剂残片,紫外光谱分析说明聚合物链两端均含有引发剂残片,聚合过程中单体转化率随反应时间的延长而增加,聚合物PMMA-XTOH分子量也随之增加,分子量分布为1.5~2。进一步以PMMA-XTOH为大分子引发剂引发苯乙烯本体聚合,制得了PMMA-b-PS嵌段共聚物,随反应时间延长,共聚物的分子量迅速增长,分子量分布明显下降。  相似文献   

6.
以二硫代苯甲酸异丁腈酯(CPDB)为链转移剂,过氧化引发基团纳米SiO2为引发剂,在80℃的甲苯溶液中进行了甲基丙烯酸甲酯(MMA)的可逆加成-断裂链转移(RAFT)自由基聚合.结果表明,该聚合具有活性自由基聚合的特征,聚合物接枝层的分子量基本可控,单体转化率与分子量具有一定的线性关系,ln([M]0/[M])与反应时间成线性正比关系.通过TEM、AFM对杂化粒子进行了表观形貌分析.  相似文献   

7.
反相悬浮聚合法合成超高分子量聚丙烯酸钠   总被引:7,自引:0,他引:7  
以丙烯酸钠和丙烯酰胺为单体,采用反相悬浮聚合法制备了超高分子量的聚丙烯酸钠(NaPA).研究了引发剂浓度、抗交联剂及其他助剂对合成产物聚丙烯酸钠性能的影响.结果表明,(NH4)2S2O8的最佳用量是0.15%(质量分数);随着CO(NH2)2用量的增加分子量提高明显;在聚合体系中加入甲基丙烯酸N,N-二甲氨基乙酯(DMAEMA)可提高分子量但用量应控制在9.4×10-4%~15.6×10-4%之间.同时用抗交联剂防止交联反应,结合使用醋酸钠和异丙醇这两种分子量调节剂不仅能提高分子量而且溶解性也得到改善.最终得到了分子量高达3.0×107的产物,其分子量和溶解性能较前人研究成果有明显提高.  相似文献   

8.
以4,4′-偶氮二[4-氰基戊酰(对-二甲基氨基)苯胺](ACPDA)为引发剂,在N,N-二甲基甲酰胺(DMF)中研究了甲基丙烯酸甲酯(MMA)的聚合行为.考察了聚合反应温度、单体浓度和引发剂浓度对聚合物分子量和聚合反应速率的影响,测定了反应级数和聚合反应的活化能.实验结果表明:聚合反应速率随单体浓度、ACPDA浓度的增加和反应温度的升高而加快;聚合物分子量随单体浓度的增大而增大,随ACPDA浓度的增大和反应温度的升高而降低.ACPDA引发MMA的聚合速率方程为Rp=K[St]1.04[ACPDA]0.56,聚合反应的表观活化能Ea=86.00kJ/mol.  相似文献   

9.
以4,4'-偶氮二[4-氰基戊酰(对-二甲基氨基)苯胺](ACPDA)为引发剂,在N,N-二甲基甲酰胺(DMF)中研究了甲基丙烯酸甲酯(MMA)的聚合行为.考察了聚合反应温度、单体浓度和引发剂浓度对聚合物分子量和聚合反应速率的影响,测定了反应级数和聚合反应的活化能.实验结果表明聚合反应速率随单体浓度、ACPDA浓度的增加和反应温度的升高而加快;聚合物分子量随单体浓度的增大而增大,随ACPDA浓度的增大和反应温度的升高而降低.ACPDA引发MMA的聚合速率方程为Rp=K[St]1.04[ACPDA]0.56,聚合反应的表观活化能Ea=86.00kJ/mol.  相似文献   

10.
合成低分子量聚丙烯酸钠的新方法   总被引:7,自引:0,他引:7  
采用水溶液静态聚合法,用平板式反应器合成低分子量聚丙烯酸钠,通过选择合适的分子量调节剂、引发剂用量和聚合温度,可以有效防止爆聚现象发生,且反应周期短,生产成本低。研究了分子量调节剂用量、引发剂用量、单体浓度和反应时间等因素对聚合物粘均分子量的影响,结果表明:当mn-C12SH/mM=0.04,mI/mM=0.04,wM=0.30,温度60°C,反应3 h时,可合成分子量5 000左右的低分子量聚丙烯酸钠,分子量分布较窄,且单体转化率在99%以上。  相似文献   

11.
低分子量聚丙烯酸(钠)的合成及表征   总被引:1,自引:0,他引:1  
聚丙烯酸钠在很多领域的广泛应用,我们采用水溶液聚合法中的中和法合成低分子量聚丙烯酸钠(PAANa),用酸碱滴定的方法测得聚丙烯酸的平均分子量,并探讨了单体浓度、引发剂用量、链转移剂用量以及反应温度等因素对聚丙烯酸钠分子量的影响趋势和程度。从而得出合成低分子量聚丙烯酸钠的较佳条件。  相似文献   

12.
以4-氰基苄溴(CBB)为引发剂、Fe Cl3·6H2O/PPh3络合体系为催化剂、VC为还原剂实现了对苯乙烯(St)的电子活化再生原子转移自由基聚合(AGET ATRP)。研究表明,聚合过程中单体转化随反应时间增加而线性增长、数均分子量随单体转化率提高而线性增长、得到的聚合物分子量分布指数(PDI)在1.07~1.31之间。为进一步研究取代基团对聚合的影响,选用了4-甲基苄溴(MBB)为引发剂作了对比研究,所得聚合物的结构用核磁氢谱进行了验证。  相似文献   

13.
低分子量聚丙烯酸钠的合成研究及表征   总被引:5,自引:0,他引:5  
由丙烯酸合成低分子量(1000~2000)聚丙烯酸钠是一种性能优良的分散剂。以水为溶剂,丙烯酸为单体,过硫酸铵为引发剂,异丙醇为链转移剂,采用溶液聚合方法得到不同分子量的聚丙烯酸钠,用粘度法测得粘均分子量。分析单体浓度、引发剂浓度、温度和链转移剂对聚合物分子量的影响,得出了各反应因素对聚丙烯酸钠分子量的影响趋势和程度。并用FTIR分析单体和聚合物的结构,验证聚合物的合成。  相似文献   

14.
反相微小乳液合成速溶高分子量聚丙烯酸钠   总被引:1,自引:0,他引:1  
以聚异丁烯丁二酰亚胺、十二烷基硫酸钠为乳化剂,采用反相微小乳液法合成了速溶高分子量聚丙烯酸钠.研究了乳化剂和pH值对聚合体系稳定性的影响以及(NH4)2S2O8—甲基丙烯酸—N、N—二甲氨基乙酯(DMAEMA)—NaHSO3引发剂、单体浓度、烯丙醇对聚合物性能的影响.结果表明,最佳的实验条件:pH值等于10;乳化剂用量为5%(油相);引发剂浓度分别为0.06%、0.04%、0.02%(W单体);烯丙醇的浓度为0.08%(W单体);单体浓度为40%(水相).在最佳实验条件下,合成聚合物分子量超过2×107,且溶解性能优于溶液聚合和反相悬浮聚合所得产品.  相似文献   

15.
以丙烯酰胺(AM)、丙烯酸(AA)单体为原料,采用复合引发体系,通过水溶液聚合,制备出了特高分子量聚丙烯酰胺.研究了聚合体系的pH值、催化剂、链转移剂和氧化还原引发体系对聚丙烯酰胺分子量与溶解性能的影响.并通过正交实验得出了最佳工艺条件.当pH值为6.8,催化剂用量为0.05%,链转移剂为0.01%,引发剂用量为0.4%,在此条件下合成得到的聚合产品分子量高达8 900万,产品溶解性能好,20 min内可以完全溶解.  相似文献   

16.
本文研究了2,2′-偶氮二异丁酸二甲酯的合成和其在甲苯、二甲苯中的分解动力学,测定了分解速度常数,从阿累尼乌斯方程作图,得到下式: K_d/s~(-1)=1.63×10~(14) exp(-123.3 KJ/RT) 2,2′- 偶氮二异丁酸二甲酯作为苯乙烯自由基聚合引发剂,其反应转化率随引发剂用量增加而增高,产物分子量则随之下降,引发剂用量在5%以上时,可得到分子量低于10~3的产物,得到的含有酯基产物,能够水解生成含有羧端基的齐聚物。  相似文献   

17.
N,N-二甲基苯胺(DMA)-苄基氯(BC)-醋酸(HAc)体系,可引发甲基丙烯酸甲酯(MMA)的自由基聚合。聚合速率式为:R_P=K[MMA][DMA]~(1/2)[BC]~(1/2)[HAc]°。HAc起催化作用,明显地降低了体系的活化能E_a。测得E_a=36.8kJ/mol。在相同的反应条件下,该体系的聚合速率较DMA-BC-MMA体系快一个数量级。聚合物的分子量与引发剂浓度的1/2次方成反比,且随反应温度的升高而降低。氧对聚合具有明显而复杂的影响。讨论了该引发体系的引发机理。  相似文献   

18.
含药物端基PEG大单体的合成   总被引:1,自引:2,他引:1  
以烯丙醇钠为引发剂引发环氧乙烷(EO)开环聚合再与含羧基药物烟酸、布洛芬、酮洛芬、萘普生反应得到含药物端基的PEG大单体(分别记为PEG-1、PEG-2、PEG-3、PEG-4),聚合物精制后用IR,1H-NMR和GPC进行了表征,结果表明合成的四种大单体分子量分布较窄,且分子量在一定范围内可控.  相似文献   

19.
以1-苯基氯乙烷(1-PEC l)为引发剂、氯化亚铜(CuC l)为催化剂、2,2′-联吡啶(bpy)为配体,采用开放体系,在外加搅拌和氮气保护下,研究了苯乙烯的悬浮法原子转移自由基聚合(ATRP),采用分散相水中加入电解质N aC l的方法抑制催化剂配合物向水相的扩散.结果表明,所得聚合物的分子量随转化率呈线性增加,分子量分布较窄(分布指数可达1.40),聚合反应对单体浓度为一级动力学关系,经计算聚合体系的活性自由基浓度为6.89×1-0 8m o l/L;而对A IBN为引发剂时该催化体系的反相ATRP悬浮聚合研究显示,聚合反应可控性很差,原因在于CuC l2的水溶性太强.  相似文献   

20.
采用自由基聚合法,以丙烯酸和过硫酸铵分别作为聚合单体和引发剂,分别选用异丙醇和亚硫酸氢钠作为链转移剂,合成聚丙烯酸钠(PAANa).用红外光谱表征了所合成的PAANa的结构,以乌氏粘度计和Mark-HouwinkSakurad方程[η]=K*Mv~α测定了合成产物的粘均分子量,以分散高岭土的沉降时间为指标表征其分散能力,考察了两种不同链转移剂及其用量对聚合物分子量的影响.结果表明,控制链转移剂亚硫酸氢钠的用量在10%~15%之间,可以比较准确地调整PAANa的分子量在1000~7000范围内;控制链转移剂异丙醇的用量在100%~300%之间,可以比较准确地调整PAANa的分子量在1000~3000范围内.还对采用二种链转移剂的技术经济性进行了分析比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号