首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 138 毫秒
1.
假定(X,‖·‖)为可分的Banach空间, X*为其对偶空间,X*可分. 设(Ω,B,P)为完备的概率空间, {Bn,n≥1}为B的上升子σ-域族, 且B=∨Bn. 讨论集值L1极限鞅的一些性质, 并利用支撑函数及实值L1 极限鞅的Riesz分解定理, 给出了集值L1极限鞅可Riesz分解的一个充要条件.  相似文献   

2.
集值Pramart的Riesz逼近   总被引:1,自引:1,他引:0  
设(X,‖·‖)为可分的Banach空间, X*为其对偶空间, X*可分, (Ω,B,P)为完备的概率空间, {Bn,n≥1}为B的上升子σ域族, 且B=∨Bn. 在X*可分的条件下给出了集值Pramart的鞅逼近, 并在此基础上证明了集值Subpramart在弱收敛意义下的收敛定理及Pramart在Kuratowski Mosco收敛意义下的收敛定理.  相似文献   

3.
假设(X,||·||)为可分的Banach空间, X*为其对偶空间. 设(Ω,B,P)为完备的概率空间, {Bn, n≥1}为B的上升子σ-域族, 且B=∨Bn. 证明了集值极限鞅的Riesz逼近定理, 并在此基础上, 给出了集值极 限鞅在Kuratowski Mosco收敛意义、 Kuratowski收敛意义及弱收敛意义下的收敛定理.  相似文献   

4.
假设(X,||·||)为可分的Banach空间, X*为其对偶空间, X*可分. 设(Ω,F ,P)为完备的概率空间, {An,n≥1}为F的上升子σ 域族, 且A=∨n≥1An. 在X*可分的条件下讨论了集值Pramart的一些性质, 并研究了集值Pramart诱导的集值测度及其性质.  相似文献   

5.
假定(X,‖.‖)为实可分的Banach空间,X*为其对偶空间,(Ω,A,P)为完备的概率空间,{Bn,n≤-1}为上升子σ-域族.讨论了随机集族本性上确界的性质,给出了集值逆Superpramart的逆上鞅逼近及集值逆上鞅在Kuratowski意义下的收敛定理.以此为基础,利用支撑函数证明了集值逆Superpramart在Kuratowski意义与Kuratowski-Mosco意义下的收敛定理,解决了集值逆Superpramart的收敛性问题.  相似文献   

6.
假定(X,‖·‖)为可分的Banach空间,X*为其对偶空间.设(Ω,(B),P)为完备的概率空间,{(B)n,n≥1}为B的上升子σ-域族,且(B)=V(B)n .证明了集值Pramart的鞅逼近,在此基础上,给出了集值Pramart在Kuratowski-Mosco收敛意义及弱收敛意义下的收敛定理.  相似文献   

7.
应用算子论方法研究Banach空间X中p(1i}i∈I, 定义了有界线性算子Tf: X*→lp, 建立了从全体p阶Bessel列组成的Banach空间BpX(I)到算子空间B(X*,lp)上的等距线性同构α: f→Tf, 并给出了p阶Bessel列的扰动定理.  相似文献   

8.
弱集值渐近鞅的收敛定理   总被引:1,自引:1,他引:0       下载免费PDF全文
为了得到关于弱集值渐近鞅的收敛性质,首先证明了支撑数列的极限亦为一支撑函数,利用支撑函数的性质以及 值鞅的Doob停止定理,证明得到了两个结论:(1)在一定条件下,弱值值渐近鞅存在无限逼近的闭凸集值鞅;(2)在弱收敛意义下,弱值值渐近鞅收敛的两个等价条件。  相似文献   

9.
举例说明即使在一维实空间, 集值下鞅并非都可Riesz分解, 即集值下鞅表示为集值鞅与集值下鞅之和. 给出集值下鞅一种新的Riesz分解定义, 证明了一维实空间集值下鞅有该种形式的Riesz分解, 并举例说明在二维实空间, 集值下鞅不具有这种形式的Riesz分解. 最后证明了集值下鞅具有这种形式Riesz分解的充分必要条件.  相似文献   

10.
首先给出了连续参数集值下鞅的定义.继而证明了连续参数集值下鞅的三个等价定理:(a)L1wkc(X)值下鞅等价于任给τ1<τ2,τ1,τ2∈T,∫ΩFτ1dP∫ΩFτ2dP;(b)L1fc(X)值下鞅等价于任给s,t∈R+,s<t,S1Fs(Fs)cl{E(g|Fs),g∈S1Ft(Ft)};(c)X可分时,闭凸集值下鞅等价于任给s,t∈R+,s<t,A∈Fs,cl∫AFsdPcl∫AFtdP.最后给出了弱紧凸集值随机集族的弱收敛定理和X有RNP,X可分时闭凸集值右连续下鞅的弱收敛定理.  相似文献   

11.
For weighted sums of the form where {a nj , 1 ⩽jk n ↑∞,n⩾1} is a real constant array and {X aj , 1≤jk n, n≥1} is a rowwise independent, zero mean, random element array in a real separable Banach space of typep, we establishL r convergence theorem and a general weak law of large numbers respectively, conversely, we characterize Banach spaces of typep in terms of convergence inr-th mean and probability for such weighted sums. Foundation item: Supported by the National Natural Science Foundation of China (No. 10071058) Biography: Gan Shi-xin (1939-), male, Professor, research direction: martingale theory, probability limiting theory and Banach space geometry theory.  相似文献   

12.
设{εt,t∈Z}为定义在同一概率空间(Ω,F,P )上的严平稳随机变量序列, 满足Eε0=0, E|ε0|p<∞, 对某个p>2, 且满足强混合条件. {aj, j∈Z}为一实数序列, 利用由强混合序列生成的线性过程的弱收敛定理及矩不等式讨论了在bn=O(1/log log n)的条件下的一类加权级数的收敛性质.  相似文献   

13.
设{Xn;n≥1}为均值为零、方差有限的B值m相依随机变量列. 利用B值m相依随机变量列弱收敛定理讨论了{Xn;n≥1}的完全收敛性及重对数律的精确渐进性. 所得结果是实值i.i.d.随机变量序列完全收敛性及重对数律的精确渐进性质的进一步 推广.  相似文献   

14.
设{Xn, n≥1}为一严平稳φ混合随机变量序列, EX=0,V2n为一实数阵列, 利用随机变量阵列的弱收敛定理, 在较一般的条件下, 证明了自正则加权和{Sn/Vn, n≥1}的中心极限定理, 改进并推广了已有混合序列自正则化中心极限定理的相关结果.  相似文献   

15.
{εt;t∈Z}是均值为零、 二阶矩有限的B值m相依随机元列, {aj; j∈Z}是一实数序列, 定义移动平均过程Xt利用Beveridge Nelson分解及{εt;t≥ 1}的弱收敛定理, 给出{Xt;t≥1} 满足随机指标中心极限定理的充分条件.  相似文献   

16.
在Heisenberg群上研究一类拟线性椭圆方程边值问题解的多重性.在全空间中,假设方程的主导系数及导数有界,而方程的非线性项具有超线性增长.由于在该假设下,方程所对应的泛函是连续的,但没有可微性,因此必须使用不光滑临界点理论.首先,介绍不光滑临界点理论中的弱斜率、临界点、(PS)c条件等概念和相关的基本引理;其次,研究泛函的临界点的性质,利用非线性泛函理论、Fatou引理、Lebesgue控制收敛定理和Brezis-Browder定理证明(PS)c序列的强收敛性质;最后,借助推广的山路引理得到该边值问题具有无穷多个解,且这些解是彼此分离的.  相似文献   

17.
Rotation symmetric function was presented by Pieprzyk. The algebraic configuration of rotation symmetric(RotS) function is special. For a Rots n variables function f(x1, x2, …, xn) we have f(ρn^k (x1, x2, …xn))=f(x1, x2, …, xn) for k=0, 1, …, n-1. In this paper, useing probability method we find that when the parameters of RotS function is under circular translation of indices, its walsh spectrum is invariant. And we prove the result is both sufficient and necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号