首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
石灰-粉煤灰改良膨胀土试验   总被引:17,自引:0,他引:17  
探讨利用粉煤灰、石灰粉煤灰作为添加剂改良合肥膨胀土的可行性与改良效果.试验研究了粉煤灰、石灰粉煤灰掺合物对膨胀土的基本工程性质指标、击实特性、胀缩性以及无侧限抗压强度的影响特征.试验研究结果表明,随着掺灰率的增加,膨胀土的塑性指数、活性指数、自由膨胀率、膨胀量、膨胀力与线缩率呈减小趋势,这说明掺粉煤灰可有效降低膨胀土的胀缩性.经过一定龄期养护后的击实样的膨胀试验结果表明,随着养护龄期的增加,膨胀土的膨胀量与膨胀力都有一定降低.无侧限抗压强度试验结果表明:没有经过养护的土样,粉煤灰对无侧限抗压强度的影响不明显;经过7d龄期养护后,随着掺粉煤灰率的增加,土样的无侧限抗压强度具有一定程度的增长,并且无侧限抗压强度存在一个峰值点.  相似文献   

2.
纤维增韧地质聚合物改良膨胀土力学特性试验   总被引:1,自引:0,他引:1  
针对膨胀土对工程建设的危害,提出一种纤维加筋和化学改良相结合的技术,开展无侧限抗压强度试验,探讨固化剂类型和掺量、碱激发剂的掺入、玄武岩纤维掺量以及养护龄期对改良膨胀土无侧限抗压强度的影响。研究结果表明:双掺矿渣微粉-粉煤灰(GGBS-FA)的改良效果优于单掺,GGBS-FA的最优掺量为20%,并且掺入碱激发剂Na_2SiO_3的改良效果较好,碱激发GGBS-FA改良土的强度比GGBS-FA改良土的提高了107%;随着纤维掺量的增加,改良土的强度呈现先增大后减小的趋势,GGBS-FA改良土的纤维最优掺筋率为0.6%;改良土的强度随着养护龄期的延长逐渐提高。龄期越长,改良土的脆性越大,韧性越差。  相似文献   

3.
利用秸秆灰渣及大理石灰作为添加剂,进行室内改良膨胀土试验,研究改良后的胀缩特性及强度特征.秸秆灰渣含量为0%、5%、10%、15%、20%,根据直剪、无侧限抗压强度特征得到秸秆灰渣的最佳含量10%;在秸秆灰渣最佳含量的基础上继续添加大理石灰,大理石灰含量为10%、15%、20%.在试验过程中综合考虑法向应力、固废物含量对膨胀土抗剪强度的影响,总结出膨胀土改良后的抗剪强度、粘聚力显著提高;秸秆灰渣、大理石灰和素土的最佳质量配比为10:15:75.同时进行了自由膨胀率试验、膨胀量试验、膨胀力试验和强度耐久性试验.研究中涉及的所有配比及含量均为质量分数.  相似文献   

4.
土的粒径对土的压实性、强度以及胀缩特性有一定的影响。为研究不同粒径的风化砂对膨胀土特性的影响及其影响规律,本文结合宜昌市风化砂改良膨胀土特性试验研究,对粒径(d)为0.5mm、0.5mm≤d1mm及1mm≤d2mm的风化砂改良膨胀土进行了无荷膨胀率、收缩、直剪和击实试验,得到不同粒径、不同掺砂比例改良膨胀土的击实、强度和胀缩指标。试验结果表明,掺入风化砂能够有效抑制膨胀土的胀缩特性,改善压实特性,提高膨胀土的强度;掺砂之后,膨胀土的最佳含水率、无荷膨胀率、线缩率、体缩率及收缩系数均降低,最大干密度、内摩擦角、缩限均增大。同一掺砂比例下,随着粒径的增大,膨胀土的无荷膨胀率、线缩率和体缩率均减小;内摩擦角、黏聚力、最大干密度及缩限均增大。同一粒径下,随着掺砂比例的增大,膨胀土的最佳含水率、无荷膨胀率、线缩率和体缩率均降低;缩限和内摩擦角均增大;黏聚力随着掺砂比例的增大先增大后减小。当粒径为1mm≤d2mm和0.5mm≤d1mm时,掺砂20%时黏聚力达到最大值;当粒径为0.5mm时,掺砂10%时黏聚力达到最大值。最大干密度的变化趋势随着风化砂粒径的改变而改变,当粒径为1mm≤d2mm时,最大干密度随着掺砂比例的增加而增大;当粒径为0.5mm≤d1mm时,最大干密度随着掺砂比例的增大先增大后逐渐减小,掺砂30%时,最大干密度达到最大值;当粒径为0.5mm时,最大干密度随着掺砂比例的增大先增大后减小,掺砂20%时,最大干密度达到最大值。  相似文献   

5.
无侧限抗压强度是反映土体物理力学特性的重要参数指标之一,结合湖北荆门地区某公路路段的膨胀土,进行了水泥、石灰、粉煤灰改良膨胀土的无侧限抗压强度试验,研究表明:水泥、石灰、粉煤灰均可以显著提高膨胀土的无侧限抗压强度;但是这些以化学改良为主的材料,在没有经过养护时,改性土的强度增加不明显;养护7d后,改性土的强度会显著增大;粉煤灰改良膨胀土无侧限抗压强度与其掺量之间有良好的对数关系,水泥、石灰改良膨胀土的无侧限抗压强度与其掺量之间均有良好的多项式关系,综合考虑各方面因素,确定石灰是最优方案,且在石灰掺量为7%时,改良效果最佳.  相似文献   

6.
针对安徽张庄矿尾矿坝填料膨胀土进行含水率、自由膨胀率δe f、膨胀力Pe和50 kPa压力下的有荷膨胀率δeP50试验,确定膨胀土的膨胀潜势及分布范围,采用掺石灰的方法对土体进行改良并进行击实试验,根据最大干密度和压实度96%制样,研究不同石灰掺量改良土自由膨胀率随养护时间的关系,进行干湿循环试验研究改良土的胀缩变形规律、渗透特性及抗剪强度特性.试验研究结果表明:随着石灰掺量的增加,膨胀土击实后最优含水率逐渐升高、最大干密度逐渐减小;改良土自由膨胀率随着养护时间的增加逐渐减小并于30 d之后趋于稳定;经历6次干湿循环后试样的胀缩变形存在着不可逆性,但掺灰量大于2%的改良土绝对膨胀率小于4%,试样表面无明显裂隙,抗剪强度提高明显,可认为试样膨胀性得到了良好的控制;对于相同石灰掺量的改良土,二次掺灰的改良效果要优于一次掺灰.  相似文献   

7.
为研究碱激发粉煤灰、玄武岩纤维对膨胀土的改良效果,开展无侧限抗压强度试验,分析了碱激发剂的类型及掺量、纤维和粉煤灰掺量以及养护龄期对改良土强度的影响。研究结果表明:Na_2CO_3、Na_2SiO_3、NaOH 3种碱激发剂中,Na2Si O3的激发效果较好;单掺纤维或粉煤灰均能够提高土体的强度,纤维粉煤灰共同改良的膨胀土强度高于相同掺量下的单掺纤维和单掺粉煤灰改良土强度;纤维的加入改善了粉煤灰土样的脆性破坏模式;随着养护龄期的增长,改良土的强度逐渐提高。  相似文献   

8.
为了研究木质素改良粉土的力学性能,通过无侧限抗压强度试验和扫描电镜试验研究了木质素改良土的无侧限抗压强度,分析了木质素掺量、养护龄期、孔隙率及骨架孔隙比的影响.研究结果表明:改良土的无侧限抗压强度随木质素掺量的增大呈先增大、后减小的趋势,随着养护龄期的增大呈逐渐增大的趋势;建立了双曲线模型,预测改良土的无侧限抗压强度与养护龄期、木质素掺量的关系;在粉土中因添加木质素而生成的胶结物质改变了粉土的孔隙率和骨架孔隙比,改良土无侧限抗压强度随着骨架孔隙比的增大而减小;木质素掺量为8%时,孔隙率和骨架孔隙比达到最小值,而无侧限抗压强度达到最大值.  相似文献   

9.
以益娄高速桃江段黏性土为例,基于水泥改良洗衣粉污染土的室内试验,探讨了水泥改良洗衣粉污染土的CBR(加州承载比)试验和无侧限抗压强度试验,并对水泥改良洗衣粉污染土的强度预测方法进行了研究。结果表明:随着水泥掺量的增加,水泥改良洗衣粉污染土的CBR值先急剧增加后缓慢增加;不同洗衣粉含量的污染土样无侧限抗压强度随着水泥掺量增加均得到提高。通过对不同水泥掺量,不同龄期的试样强度进行数据拟合,得到了水泥改良洗衣粉污染土的无侧限抗压强度预测公式。  相似文献   

10.
以益娄高速膨胀土路基改性处理为例,基于生石灰与熟石灰改性膨胀土的室内试验,进行试验结果的对比,探讨了生、熟石灰改性膨胀土的击实试验和无侧限抗压强度试验确定最佳含水率的方法。研究表明:对比生石灰和熟石灰在击实试验中对干密度的影响可知,最佳含水率下生石灰改性膨胀土的干密度值较大;当掺灰量相同时,无侧限抗压强度随初试含水率的增加先增大后减小,初始含水率大于最佳含水率3%时无侧限抗压强度值最大;对比生石灰和熟石灰对膨胀土无侧限抗压强度的影响可知,生石灰改性膨胀土无侧限抗压强度峰值较大。  相似文献   

11.
为提高资源的循环利用,减少农业废弃物对环境的潜在影响,利用秸秆灰渣作为添加剂改良膨胀土,通过室内试验研究改良后膨胀土的基本工程性质指标、三维自由体变化特征和膨胀压力特征。秸秆灰渣以(干质量之比)0%,10%,15%,20%的比例与膨胀土混合后进行击实试验,在最大干密度及最佳含水率条件下进行三维自由体膨胀试验、三维自由体收缩试验和膨胀力试验。试验结果表明膨胀土的体应变、塑性指标和膨胀压力随着秸秆灰渣含量的增加而逐渐降低,最佳含量(17%)时体膨胀应变降低了61.2%,体收缩应变降低了61.77%,膨胀压力降低了85.37%。  相似文献   

12.
本文以宁淮高速公路淮安段膨胀土填料为研究对象,通过室内试验研究石灰改良膨胀土作为路基填料的膨胀性和力学性质。在天然膨胀土2%石灰砂化的基础上,制备不同初始含水率与压实度的石灰改良土,进行不同养护龄期的有荷膨胀率和强度特性试验。试验结果表明:石灰改良土线膨胀率和膨胀力均有大幅度的降低,且随含水率和养护龄期保持减小趋势、随压实度保持增大趋势;石灰改良土无侧限抗压强度、黏聚力、内摩擦角均有一定程度的提高。因此,石灰改良膨胀土作为路基填料的施工工艺在工程中是可行的,为膨胀土改良方案选择以及膨胀土地区公路路基设计和现场施工提供科学依据和参考。  相似文献   

13.
膨胀土是遇水较为敏感的特殊土,所以研究膨胀土在干湿循环条件下的抗剪强度特征非常重要,尤其是对改良膨胀土的研究更有实际的工程意义。通过室内直接剪切试验,研究了膨胀土及秸秆灰渣改良土的抗剪强度特征。试验证明,膨胀土的抗剪强度随着灰渣含量的增加而增加,在灰渣含量为17%时强度及黏聚力达到最大值;而改良土的内摩擦角随着灰渣含量的增加而增加,同时改良土强度随着竖向力及养护龄期的增加而线性提高;干湿循环试验证明,膨胀土随着秸秆灰渣含量的增加抗剪强度衰减程度逐渐减小,试样的抗剪强度在第1次干湿循环时衰减较大;4次干湿循环后膨胀土黏聚力从37.0kpa,衰减到4.0 k Pa,内摩擦角衰减范围是28.3~11.64,17%秸秆灰渣改良土黏聚力衰减范围是74.16~57.43,内摩擦角衰减范围是46.05~42.25;直接剪切试验表明17%秸秆灰渣改良土为最佳配比。  相似文献   

14.
在西北季节冻土区广泛分布着盐渍土,其在空间分布上连续性差,工程性质极其不稳定;且浅层盐渍土受冻融作用的反复影响,其力学性质长期处于动态的变化之中,给工程设计与建设带来了极大的挑战.鉴于此,通过压缩试验及无侧限抗压强度试验,研究稻壳灰对盐渍土的改良效果.结果表明,稻壳灰可以显著地改善盐渍土的压缩特性,并提高其无侧限抗压强度,且改良土的压缩系数与抗压强度之间呈现出负相关的线性关系.随着掺灰量和养护龄期的增加,改良土的压缩系数不断减小,无侧限抗压强度呈现出不断增加的趋势,最大可增加4倍左右.以抗压强度损失率为指标对改良土的抗冻性进行了评价,发现改良土的抗冻性随着掺灰量的增加呈现出先增强后减弱的趋势,且在15%的掺灰量时,其抗冻性效果最显著;相对而言,养护龄期对于改良土的抗冻性影响较小.  相似文献   

15.
石灰、粉煤灰改良膨胀土性质机理   总被引:12,自引:2,他引:12  
在分析石灰、粉煤灰混合料改良膨胀土化学机理的基础上,通过膨胀土及其改良土的性质与强度特性试验,得到了石灰、粉煤灰混合料在改良膨胀土中的最佳添加量;发现改良膨胀土的液限、塑限比膨胀土的大,膨胀土的应力-应变曲线呈应变硬化型,改良膨胀土的呈软化型,改良膨胀土的粘聚力比膨胀土的大,而内摩擦角反而小;还发现膨胀土的自由膨胀率随石灰量的增加而减小,无侧限抗压强度随石灰量的增加而增大。  相似文献   

16.
针对上海苏州河区域的软土特点,将粉煤灰和水泥作为固化材料加固饱和软黏土,研究粉煤灰对水泥土力学特性的影响.通过无侧限抗压强度试验,研究了不同粉煤灰掺量、水泥掺量以及不同龄期对水泥土强度和变形特性的影响;通过Matlab数据拟合,提出了水泥粉煤灰固化土的强度预测方法.随着龄期的增长和粉煤灰掺量的增加,固化土的应力应变关系由塑性破坏转变成脆性破坏.当粉煤灰掺量过高时,水泥土中易发生耦合反应,影响固化效果.因此,水泥掺量与粉煤灰掺量比例为1∶1,且粉煤灰最佳掺量为14%~18%.  相似文献   

17.
以合肥某公路工程膨胀土为原材料,在保持含水率和干密度不变的情况下,将磷尾矿按不同质量比掺入膨胀土中,对改良后土体进行无荷膨胀率、无侧限抗压强度及三轴压缩试验。试验结果表明,随着磷尾矿掺量的增加,改良土的膨胀率逐渐降低,磷尾矿可有效减小膨胀土的膨胀性;主应力差峰值随着磷尾矿掺量的增加,呈现先增大后减小的趋势,在掺量为6%时,抗剪强度达到最大;黏聚力随着磷尾矿掺量的增加而减小,内摩擦角先增大后减小。  相似文献   

18.
膨胀土作为一种非饱和黏性土,因其吸水膨胀失水收缩的特性而成为一种具有危害性的地质土体,尤其在干湿气候交替变化的环境中,更会因其湿胀干缩产生变形导致工程事故的发生。通过使用钢渣粉作为新型固化剂,与水泥组合改良膨胀土,研究改良膨胀土在干湿循环条件下的强度特性变化规律。通过室内试验研究了纯膨胀土(Es)、水泥改良膨胀土(Es-C)、钢渣粉-水泥改良膨胀土(Es-SSP-C)和钢渣粉-水泥-NaOH改良膨胀土(Es-SSP-C-N)在不同养护龄期以及不同干湿循环次数作用下其无侧限抗压强度变化规律。试验结果表明:3种改良土体的强度都随养护龄期的增加而增大,并且在干湿循环作用下四种土体都有不同程度的强度损失,但在强度上总是呈现出Es-SSP-C-NEs-CEs-SSP-CEs的规律,意味着在改良效果上Es-SSP-C-N更优于另外两种方案。  相似文献   

19.
粉煤灰、矿渣复配组成碱激发复合水泥可以改善单一组分碱激发水泥的性能劣势。为了研究不同碱当量、不同粉煤灰和矿渣掺量对碱激发粉煤灰-矿渣砂浆力学性能、干燥收缩及微观结构特性的影响,采用抗压、抗折强度试验、吸水率试验、干燥收缩试验、微观扫描电子显微镜(scanning electron microscope, SEM)及傅里叶红外光谱(Fourier transform infrared spectrometer, FTIR)试验进行表征。结果表明:3、7、28 d龄期时,随着碱当量和矿渣掺量增加,粉煤灰-矿渣砂浆抗压、抗折强度呈逐渐增加趋势,吸水率和干燥收缩率呈逐渐下降趋势。其中龄期为28 d,碱当量为6%、矿渣掺量为100%时,碱激发粉煤灰-矿渣砂浆抗压强度达到峰值110.84 MPa,抗折强度达到峰值10.77 MPa,吸水率最小,为1.2%,与4%的粉煤灰-矿渣砂浆相比,碱当量为6%的砂浆干燥收缩率均减少10%以上。由微观分析知,粉煤灰-矿渣砂浆在碱激发作用下水化产物主要为铝硅酸盐凝胶和水化硅酸钙凝胶,粉煤灰掺量越大,凝胶结晶度越低。碱当量越大,体系水化产物数量越多,结构越密实。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号