首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
轧辊弹性变形对中厚板辊缝设定的影响   总被引:6,自引:4,他引:6  
根据中厚板轧制过程的受力模型 ,将辊缝变化转化为辊系的弹性变形 ,利用影响函数法 ,计算出轧件宽度、工作辊半径、支承辊半径、工作辊凸度、支承辊凸度及轧制力等因素对辊缝设定的影响·仿真结果表明 :①随着支承辊半径的增大 ,轧辊变形量呈线性减少 ;②随着工作辊半径增大 ,轧辊变形量呈线性增加 ;③随着支承辊凸度的增大 ,轧辊变形量呈线性增加 ;④工作辊凸度与轧辊变形量之间呈线性关系 ,轧件宽度的变化直接影响该线性关系的走向 ;⑤随着轧制力增加 ,轧辊变形量线性增加·只要轧制力相等 ,轧辊变形基本不变  相似文献   

2.
采用数值模拟和热轧实验研究了轧制速度对2195铝合金热轧(相同轧制规程)过程的影响.结果表明:不同轧制速度板材厚度方向的组织均匀性不同,轧速1.2 m/s板材厚度方向的变形组织比0.3 m/s板材更均匀;数值模拟获得终轧板材厚度方向的等效应变分布也是轧速1.2 m/s板材更均匀,与板材组织特征对应.轧制速度对相同轧制规程终轧板材宽展有影响,1.2 m/s终轧板材比0.3 m/s终轧板材宽度更大,长度更短,数值模拟与实验结果相对应.数值模拟结果和热轧实验结果在轧制力、温度变化、板材最终形状、厚度方向变形均匀性方面有较好的一致性.  相似文献   

3.
单位宽度轧制力对热轧带钢凸度的影响规律   总被引:1,自引:1,他引:1  
为了建立高精度的热轧带钢凸度计算数学模型 ,根据带钢凸度计算理论 ,采用影响函数法开发了四辊轧机带钢凸度影响率计算软件 ,系统地分析了单位宽度轧制力、轧辊直径和压下量对单位宽度轧制力影响率的影响规律·结果表明单位宽度轧制力影响率随带钢宽度的增加呈抛物线变化 ;轧辊直径和压下量对单位宽度轧制力影响率有一定的影响 ;建立了高精度单位宽度轧制力影响率的数学模型 ,确定了单位宽度轧制力影响率基本值及工作辊直径、支撑辊直径、压下量对单位宽度轧制力影响率修正系数的 6次拟合系数 ,为板形控制系统模型的建立及参数优化提供了理论依据  相似文献   

4.
实验研究指出,轧辊和轧件表面微不平度会影响进入变形区润滑剂数量。力图反映轧制时曳入润滑剂的理论模型由于其轧辊和轧件的表面形状采用平面数学函数描述,所以一直未获得最佳结果。轧制时轧辊和被轧金属可能具有不同类型微不平度。横向粗糙度是由长而窄的凸凹不均匀微不平度形成,其方向垂直于轧制轴线;而纵向粗糙度是顺轧制方向的,也是窄长的凸凹  相似文献   

5.
在线高精度中厚板凸度计算模型   总被引:5,自引:0,他引:5  
基于普通中厚板四辊轧机,利用影响函数法分析了轧件宽度、轧制力、工作辊和支撑辊尺寸和弯辊力对有载轧辊凸度的影响,并根据大量计算数据进行回归,得出在线有载轧辊凸度计算模型·分析了轧件入口凸度对出口凸度的遗传效果,综合有载轧辊凸度模型和板凸度遗传系数模型得到在线板凸度计算模型·该模型合理地考虑了轧辊变形和轧件横向流动的影响,能够真实反映出口板凸度的大小,计算精度高,是在线板形和板凸度控制的有效工具·  相似文献   

6.
通过调控轧制过程轧件表层与心部温差,实现厚度为76 mm的7050铝合金板的差温轧制。采用金相、硬度、室温拉伸、SEM和EBSD等方法研究差温轧制对厚板不同厚度层组织与性能的影响。研究结果表明:与常规轧制厚板相比,差温轧制厚板通过控制心部与表层的屈服强度,提高厚板变形均匀性,使厚板各厚度层难溶相尺寸均匀。但由于差温轧制人为降低板材温度、增大厚板的变形储能,使厚板再结晶程度提高。总体而言,差温轧制可提高7050铝合金厚板的厚向硬度与拉伸性能的均匀性;厚板各层硬度的不均匀性由10.7%下降到3.0%,厚板各层抗拉强度的不均匀性由9.0%降低到0.7%。  相似文献   

7.
文章对目前锂电池极片轧辊利用小辊颈结构减少和控制轧辊挠度变形的方法提出质疑。在建立轧辊参数模型的基础上,首先通过理论分析的方法求解对小辊颈结构施加矫正拉力前、后轧辊的变形挠度大小;然后利用数值模拟的方法对其进行静态模拟仿真,模拟不同工况下轧辊的变形与应力分布;分析了在施加矫正拉力前、后其轧制区的变形分布与数值大小,得出施加拉力产生的最大矫正变形量所占比例不超过原变形量的0.7%。采用理论分析与数值模拟相结合的方法得到的结果证明,通过增加小辊颈结构改善轧辊变形的方法在实施时既增加材料成本又导致机构繁琐,并且不能有效地减少和控制轧辊的挠度变形,因此,增加小辊颈结构施加拉力是没有必要的。该结论可以为极片轧辊的结构设计提供一定的参考。  相似文献   

8.
横向不均匀润滑轧制理论   总被引:1,自引:0,他引:1  
针对轧辊轴向不均匀磨损及由此带来的板形控制问题,建立了三维弹塑性动态辊系模型,分析了辊件间接触状态及其与轧辊轴向磨损分布间的关系,并由此提出了横向不均匀润滑轧制理论.仿真结果表明,通过改变辊件间横向摩擦因数分布,在保证带钢质量的前提下,实现了辊件间接触压力及摩擦力分布的均匀化,从理论上验证了横向不均匀润滑在改善辊件间接触状态方面起到的积极作用.最后,对横向不均匀润滑轧制理论的可行性进行了分析.  相似文献   

9.
针对国内某热连轧厂精轧机组某机架轧机两侧刚度不对称的实际情况,为了研究四辊轧机驱动侧和操作侧刚度不对称条件下轧辊弹性变形的规律,采用影响函数法开发了基于双悬臂梁模型的轧辊弹性变形模拟计算模块,对刚度不对称时的四辊轧机进行了受力分析,对轧辊和轧件进行了离散化,给出了关键的影响函数.使用该计算模块并结合现场实际数据计算了不同刚度差条件下工作辊的弹性挠曲、工作辊与轧件之间的压扁、工作辊与支撑辊之间的弹性压扁、轧制力的横向分布和辊间压力的横向分布规律,研究了不同刚度差条件下轧件出口断面形状的变化规律.  相似文献   

10.
锂电池极片的辊轧是锂电池极片生产过程中不可缺少的一环,极片作为锂电池的核心部件之一,其质量会直接影响到锂电池的性能。对直通式热轧辊进行仿真模拟,分析轧辊的温度-形变特性;通过模拟,确定轧辊流道的改进方向,并对改进后轧辊进行不同配油方案下的温度-形变特性分析。结果表明:结构改进可以提高轧辊表面温度均匀性,增加轧辊表面有效长度。  相似文献   

11.
本文专门研究了在四辊轧机上异步轧制极薄带材的变形规律。作者以轧辊的弹性压扁和钢带本身的弹塑性变形为基础,研究了当钢带轧薄到一定厚度所出现的恒延伸特性,提出了能解释特有的变形特点的“弹性塞”理论,还推导出开始出现恒延伸的厚度计算公式。研究表明:异步轧制不仅可以显著降低轧制压力,并且最小可轧厚度不受工作辊径的限制。延伸对轧制压力变化的不敏感性导致了变形均匀、板型好及操作简单的实际效果。  相似文献   

12.
为了揭示变厚度轧制过程轧件水平速度与轧辊垂直移动速度之间的关系,从分析变厚度轧制微元体变形入手,利用体积不变条件,建立了变厚度轧制变形区轧件水平速度关系微分方程(VGR-V方程).在给定的边界条件下对VGR-V方程进行了求解,得到了计算变形区轧件水平速度的表达式,同时验证了变厚度轧制同一时刻变形区轧件各断面秒流量不相等.给出了变厚度轧制过程的轧件水平速度分布的典型算例,从中可见各工艺参数对轧件水平速度的影响规律.该研究结果为变厚度轧制变形参数和力能参数求解提供了基础.  相似文献   

13.
结合国内某厂6机架热连轧精轧机组实际条件,选取典型产品制定了带钢轧制过程中板形急停后的测量实验方案.根据此方案进行了测量实验,得到带钢机架间板凸度实测值.结合轧制过程中各道次轧制力、弯辊力及辊形曲线等实际数据,采用基于影响函数法的四辊轧机辊系弹性变形软件针对该典型产品的板形控制过程进行计算,分析了轧辊平均凸度计算值与设定值之间存在偏差的原因.将带钢机架间横向厚度分布的计算值与实测值进行比较,二者吻合较好.  相似文献   

14.
以流体力学理论、轧制理论及Hill的特性曲线微分方程解法为基础,建立了轧制界面考虑入口板带厚度、轧辊半径发生波动下非稳态油膜厚度分布动力学模型,提出了油膜波动系数来反映界面油膜厚度绝对波动,并进行了相应的仿真分析.结果表明:非稳态条件下轧制界面油膜厚度分布性态会随时间不同而发生变化,不同时刻最小油膜厚度也会发生变化;界面油膜厚度的绝对波动会随着入口板带厚度、轧辊半径非均匀程度加剧而变大,而入口板带厚度、轧辊半径的变化频率对界面油膜厚度的绝对波动影响较小.  相似文献   

15.
目的研究全钒液流电池组装预应力对电池性能的影响.方法基于固体力学、流体力学和电化学原理,建立二维模型.模型耦合了固体力学的本构方程和流体控制方程、Nernst-Planck电流分布方程,分析组装预紧力对石墨毡内应力、变形、孔隙率和电流密度分布的影响.结果预紧力的增大加剧了石墨毡内应力、变形和孔隙率的不均一性,从而导致全钒液流电池内电流密度分布的不均衡性.结论随着装配预应力的增大,石墨毡内应力和变形分布不均匀性加剧;预应力越大,孔隙率分布不均匀性越剧烈;预应力越大,石墨毡内电流密度不均匀性越剧烈.  相似文献   

16.
一、前言 随着生产的发展,对冷轧板带质量提出了更高的要求。(1)沿轧制方向(纵向)板厚均匀,(2)沿板宽方向(横向)板厚均匀和(3)板形良好,即板带表面平坦,不发生波浪或瓢曲。 保证板形良好的条件,要求轧件沿板宽方向上各点的纵向延伸相等。在无宽展条件下,就是沿板宽方向上各点的压下率相等。在轧制过程中,沿板宽轧制压力的分布直接影响到轧辊的受力,即影响到轧辊的挠曲和压扁变形。从而影响到轧件的变形量。因此,沿板宽方向轧制压力的分布成为板形基础理论研究中的一个重要课题。  相似文献   

17.
轧制工艺润滑能有效减少轧制力,降低能耗,但是在H型钢轧制过程中引入工艺润滑造成了翼缘宽展不均、腹板偏心等缺陷。针对H型钢工艺润滑生产中遇到的问题,建立了H型钢万能轧制过程的有限元模型,对轧辊各部位不同摩擦分布情况进行了仿真模拟,深入研究了轧制润滑影响H型钢翼缘宽展的机理。通过分析不同工况条件下轧件变形区内的摩擦力分布、金属流动等因素,解释了翼缘宽展的机理并得到了翼缘宽展的规律。分析结果表明,对H型钢腹板进行轧制工艺润滑能有效减少轧制力、降低能耗;在其它工艺参数一定的情况下,翼缘宽展随翼缘及轧辊间的摩擦系数增大而减小,且基本上呈线性关系;在翼缘的二个表面中对内侧的摩擦系数更为敏感。现场工艺润滑方案设计时应充分考虑宽展对润滑轧辊不同位置时的敏感性差异。  相似文献   

18.
肖水生 《科学技术与工程》2011,11(10):2320-2323
采用均匀试验法对板带轧制头部弯曲的七种影响因素:轧件上下表面温差、轧件初始厚度、导入角、上下辊直径比、上下辊速比、压下率以及上下轧辊与轧件之间的摩擦系数比进行了数值模拟分析。通过分析获得了各影响因素重要性大小排序,并且得到了各影响因素的最优水平。数值模拟试验表明均匀试验法使试验次数大为减少,对提高工程试验效率具有指导意义。  相似文献   

19.
利用ANSYS/LS-DYNA有限元分析软件,建立了平轧辊系一体化的三维弹塑性有限元模型;利用小型重启动方法对水平辊多道次连续可逆轧制过程进行了模拟计算,分析了不同轧制规程下轧制出相同厚度中间坯的宽展变化以及不同规格的带钢轧制出不同厚度中间坯的宽展变化.不同轧制规程的模拟结果表明,轧制规程对中间坯的宽度变化关系不大,但是不同的轧制规程消耗的能量不同,所产生的轧制力和轧制力矩也不同.利用小型重启动既可以保证轧制过程的连续性,又可避免模型更新法重复建模的复杂性.  相似文献   

20.
针对极薄板小变形平整机稳态轧制负荷计算困难的问题,基于平板压缩复合变形假设,提出了改进的平整稳态轧制力及轧制力矩的数学模型.轧制力模型包括辊缝区等效变形区长度和压缩变形抗力2个经验模型;在轧制力模型计算的基础上,用输出力矩模型对带钢张力影响因素进行了经验修正;通过轧制负荷模型的理论计算结果和一条生产线的实际参数比较,证明模型具有较高计算精度,平板压缩变形假设合理.将所开发的模型应用于一条新建的极薄板平整生产线的关键设备参数的设计评估,结果表明该模型具有较高的工程应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号