首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用直流电弧放电法成功制备了粒度约60nm的Er3+-Yb3+共掺杂Al2O3纳米粒子.通过978nm激光二极管(LD)激发,获得位于526,547nm的绿色和677nm的红色上转换发光,分别对应于Er3+的2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2跃迁.退火对于样品的上转换发光具有较大影响:退火前,红色发光明显,退火后则以绿色发光为主.(ErYb)3Al5O12和α-(Al,Er,Yb)2O3混合相中增强的激发态吸收4I11/2+光子→4F7/2和能量传递2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+)过程导致绿色上转换发光显著增加.绿色和红色上转换发光过程均为双光子上转换吸收.结果表明直流电弧放电法是一种极具发展潜力的光学材料制备方法.  相似文献   

2.
通过水热法合成了YF3∶Yb3+,Er3+纳米簇,利用X射线衍射、扫描电子显微镜和透射电子显微镜对簇状结构进行观察,研究其上转换发光性质.结果表明,样品在978 nm LD激发下,具有很强的蓝色(4F5/2→4I15/2和2P3/2→4I11/2)和绿色(4S3/2,2H11/2→4I15/2)上转换发射光;样品的上转换发光强度随激发功率的不同而变化,表明绿色、蓝色上转换发光分别属于双光子和三光子能量传递过程.  相似文献   

3.
采用共沉淀法制备了平均粒径约30nm的Y_2O_3:Er,Yb纳米晶,并对其可见-红外发光特性与体相材料的差别进行了对比.结果表明:焙烧温度的升高有利于纳米晶晶化程度增强.在980nm红外激发下,Er3+离子呈现典型的绿、红光上转换特征发射,峰位位于530,550,660nm,分别对应于2H11/2→4I15/2,4S3/2→4I15/2和4F9/2→4I15/2跃迁.同时观察到了源于Er3+离子4I13/2→4I15/2辐射跃迁的1 530nm红外发射.随焙烧温度的升高,各发射光强度随之增大.但Y_2O_3:Er,Yb纳米晶呈现明显不同于体相材料的发光特性,其红、绿光强度分支比可达19.55,是体相材料的5倍,红光色纯度优异.同时,红外发射强度亦远高于体相材料.上述结果反映出Er3+的4F9/2和4I13/2能级在Y_2O_3纳米晶中的粒子布居特征迥异于体相材料,其跃迁机制亦存在很大差别.  相似文献   

4.
采用静电纺丝技术制备了PVP/[Y(NO3)3+Er(NO3)3]复合纳米纤维,经过氧化焙烧得到Y2O3:Er3+纳米纤维,再通过双坩埚氟化法制得YF3:Er3+纳米纤维。通过XRD、SEM、EDS和荧光光谱分析对样品的形貌和性质进行了表征。结果表明所制得YF3:Er3+纳米纤维是纯正交相,带有空间群Pnma。YF3:Er3+纳米纤维的直径大约为(89±11)nm且分布均匀。上转换发射光谱分析显示,在980nm激发下,YF3:Er3+纳米纤维在526、543和653nm处发射出强的绿光和弱的红光,它们分别归属于Er3+的2 H11/2→4I15/2、4S3/2→4I15/2和4F9/2→4Il5/2能级跃迁;在532nm可见光激发下,YF3:Er3+纳米纤维能够在1.52μm处产生近红外发射。随着Er3+浓度的增加,YF3:Er3+纳米纤维发光强度逐渐增大。由色坐标(CIE)图可知,YF3:Er3+纳米纤维所发射的颜色位于色坐标的绿光区。此外,还提出了YF3:Er3+纳米纤维可能的形成机理。  相似文献   

5.
利用溶剂热法结合退火工艺,成功制备了尺寸均匀的CaTiO3:Yb3+/Ho3+纳米块,通过XRD、SEM及吸收光谱表征,结果表明:在980 nm连续激光激发下,该粉体发出耀眼的绿光,光谱峰值位于543 nm和547 nm两个发射峰,对应于Ho3+离子的5 F4/5 S2→5 I8跃迁.并研究了激活剂Ho3+和敏化剂Yb3+之间配比对上转换发光材料发光性能的影响,得到了最佳离子配比.CaTiO3:Yb3+/Ho3+在Yb3+/Ho3+摩尔掺杂比为10:0.2时,发光最强,CaTiO3:Yb3+/Ho3+在Yb3+/Ho3+摩尔掺杂比为10:0.5时,红绿比最大.  相似文献   

6.
用熔融法制备了Er3 /Yb3 共掺TeO2-GeO2-B i2O3-K2O玻璃样品,对玻璃进行了差热分析并测试了玻璃的吸收光谱和上转换光谱.应用Judd-Ofelt理论计算了Er3 /Yb3 共掺锗碲铋钾玻璃的3个强度参数,及Er3 各能级的振子强度、自发辐射跃迁几率、荧光分支比和辐射寿命等光谱参数.通过977 nm的激光二极管抽运,在室温下同时观察到绿色(522和546 nm)和红色(658 nm)的荧光发射,分别是由于Er3 自2H11/2→4I15/24、S3/2→4I15/2和4F9/2→4I15/2跃迁而产生.强烈的绿光和红光发射均来源于双光子吸收过程.  相似文献   

7.
采用直流电弧放电法成功制备了粒度约60nm的Er^3+-Yb^3+共掺杂Al2O3纳米粒子.通过978nm激光二极管(LD)激发,获得位于526,547nm的绿色和677nm的红色上转换发光,分别对应于Er3+的2H11/2→^4 I15/2,^4 S3/2→^4 I15/2和^4 F9/2→^4 I15/2跃迁.退火对于样品的上转换发光具有较大影响:退火前,红色发光明显,退火后则以绿色发光为主.(ErYb)3Al5O12和α-(Al,Er,Yb)2O3混合相中增强的激发态吸收^4I11/2+光子→^4F7/2和能量传递^2F5/2(Yb^3+)+^4I11/2(Er^3+)→^2F7/2(Yb^3+)+^4F7/2(Er^3+)过程导致绿色上转换发光显著增加.绿色和红色上转换发光过程均为双光子上转换吸收.结果表明直流电弧放电法是一种极具发展潜力的光学材料制备方法.  相似文献   

8.
采用热分解法合成了一系列Ca/RE(mol)比例及掺杂浓度不同的CaYF2:RE(RE=Yb3+,Er3+)上转换纳米发光材料,在980nm红外激光照射下,肉眼可观察到明亮的黄、绿色上转换发光.通过X射线衍射(XRD)、透射电镜(TEM)、荧光光谱仪对样品进行表征.结果表明,Ca/RE(mol)比例为3,Yb3+和Er3+掺杂浓度分别为20%、2%(mol)时得到发光性能较好的立方相CaYF2:Yb,Er上转换纳米材料.980nm红外光激发下,Yb3+和Er3+共掺的CaYF2:Yb,Er发出分别来自于Er3+的2 H9/2→4I15/2跃迁的蓝光、2 H11/2,4S3/2→4I15/2跃迁的绿光和4F9/2→4I15/2跃迁的红光发射,且Er3+的红、绿光发射均为双光子过程,蓝色发光为三光子过程.  相似文献   

9.
以水热法合成了Yb3+,Er3+共掺杂的Y2O3纳米材料,并通过X射线粉末衍射、扫描电子显微镜及荧光分光光度计对样品的物相结构、微观形貌及粒度、光谱性质等进行分析表征.结果表明,样品结构属于纯立方晶系,样品形貌为棒状,其直径约100 nm,长度达到微米级,并且无明显团聚,分散性较好.样品在980 nm LD激发下,发蓝(408 nm)、绿(520~570 nm)和红色光(650~670 nm),与之对应的辐射跃迁分别属于2H9/2→4I15/22、H11/2,4S3/2→4I15/2和4F9/2→4I15/2.  相似文献   

10.
稀土离子Pr3+和Nd3+对上转换材料的发光具有特殊的敏化作用,通过在NaLuF4:Yb3+,Er3+纳米晶中共掺杂稀土离子Pr3+和Nd3+并研究它们与发光中心Er3+之间的能量传递机制.采用水热法分别合成了Pr3+和Nd3+掺杂的NaLuF4:Yb3+,Er3+纳米晶,直径约为15 nm,具有六方相结构.发光特性分析表明,随Pr3+离子掺杂浓度增加,NaLuF4:Yb3+,Er3+纳米晶的656 nm红光强度相对于544 nm绿光逐渐减弱;但是随着Nd3+离子掺杂浓度增加,其发光红绿比刚好出现相反的变化.基于功率变换谱和简化能级图分析了Pr3+-Er3+和Nd3+-Er3+之间的能量传递机制,揭示了Er3+的4I11/2能级的电子布居在多个跃迁过程中所起的关键作用.  相似文献   

11.
稀土离子掺杂的上转换纳米材料具有优异的光学性能,在光电等领域具有广阔的应用前景。本文采用溶剂热法,以乙二胺四乙酸(EDTA)为络合剂合成了的粗细均匀的六棱柱形的六方相Al3+掺杂NaGdF4:Er3+/Yb3+纳米棒。X射线研究表明适量的Al3+掺杂对NaGdF4的晶相没有产生影响,但使主衍射峰的位置发生偏移。在980nm激光激发下,与未掺杂的纳米晶相比,在Al3+的掺杂浓度为15%时,红绿光发光最大强度分别增强了5.7倍和5倍,且4F9 /2能级的荧光寿命被延长。Al3+掺杂对上转换发光的改善是因Er3+附近局部对称性的降低和粒子表面吸附基团的减少所致。  相似文献   

12.
采用溶胶-凝胶法制备了上转换材料LiLa(MoO4)2:Yb3+,Er3+(Tm3+),并对其进行了X射线衍射分析以及荧光光谱测定.在980 nm红外激光器激发下,LiLa(MoO4)2:Yb3+,Er3+发出波长为530 nm和550 nm的绿色可见光,而LiLa(MoO4)2:Yb3+,Tm3+发出波长为475 nm的蓝色可见光.对Yb3+/Er3+和Yb3+/Tm3+双掺体系的上转换发光机理进行了探讨,其中Er3+发出绿色上转换光的过程为双光子过程,而Tm3+发出蓝色上转换光的过程为三光子过程.  相似文献   

13.
采用sol-gel法制备了不同摩尔比例的Er3+/Y3+/Yb3+共掺杂Al2O3粉末.X射线衍射(XRD)结果表明各样品均以δ-Al2O3为主相.利用荧光光谱仪测试各样品的光致发光(PL)谱,结果表明Y3+的共掺杂明显的提高了Er3+的PL强度.Er3+/Y3+/Yb3+共掺杂Al2O3粉末的PL强度随着Yb3+浓度呈先增大后减小的变化,Er3+∶Y3+∶Yb3+的摩尔比例为1∶20∶10时,样品的PL强度在Y3+共掺杂的Er3+∶Al2O3粉末的PL强度提高了7倍的基础上进一步提高了近4倍,说明Er3+/Y3+/Yb3+的共掺杂能够更有效地提高Er3+的PL强度.  相似文献   

14.
用高温热分解法制备摩尔分数为18%的Yb和摩尔分数为2%的Er共掺杂α-NaYF4, α-NaLuF4,β-NaYF4,β-NaLuF4和LiYF4氟化物纳米晶, 并用X射线衍射(XRD)、 透射电子显微镜(TEM)和光致发光光谱表征样品的晶体结构、 形貌和发光性能. 结果表明: 所制备的样品均为纯相; 不同的氟化物纳米晶样品尺寸均匀, 粒径为10~15 nm; 在980 nm近红外激光激发下,所制备的氟化物纳米晶在1 550 nm附近均有下转换发射, 其中β-NaLuF4∶Yb,Er纳米晶在1 550 nm处的发射最强.  相似文献   

15.
将反相乳液合成方法与水热处理方法相结合,获得Y2O3∶Er,Yb纳米晶的前驱体,经过一定温度灼烧,获得了高发光强度的上转换Y2O3∶Er,Yb纳米晶,经水热处理的纳米晶样品具有更好的晶体结构,有利于激发电子在Er离子4F9/2能级上的分布,进而导致红色发射强度极大地提高.  相似文献   

16.
将反相乳液合成方法与水热处理方法相结合, 获得Y2O3 ∶Er,Yb纳米晶的前驱体, 经过一定温度灼烧, 获得了高发光强度的上转换Y2O3 ∶Er,Yb 纳米晶,经水热处理的纳米晶样品具有更好的晶体结构, 有利于激发电子在Er离子4F9/2能级上的分布,进而导致红色发射强度极大地提高.  相似文献   

17.
采用柠檬酸燃烧法制备稀土Tb3+掺杂的La2O3纳米晶,并用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光分光光度计对La2O3∶Tb3+纳米晶的结构、形貌和发光性能进行分析.结果表明,不同柠檬酸与稀土离子配比(C/M)制备的样品经800℃退火后均得到结晶性良好的六方相La2O3∶Tb3+纳米晶,晶粒尺寸约为20nm.纳米晶的三维荧光光谱图显示,Tb3+在基质中的最佳激发波长为280nm,在280nm光的激发下,La2O3∶Tb3+纳米晶产生Tb3+的特征发射峰,归属于5D4-7FJ(J=6,5,4)跃迁,主发射峰位置均在543nm处(5D4-7F5跃迁).同时研究了柠檬酸与稀土离子配比(C/M)对结晶度、发光性质等的影响.  相似文献   

18.
以Y2O3,Yb2O3和Er2O3为原料,利用水热法制备Y2O3,Yb3+,Er3+纳米上转换材料.通过X射线粉末衍射、扫描电镜和透射电镜对材料的晶型、成分、粒径及表面形貌进行分析.实验结果表明:所得粉体的晶型为立方晶系,晶粒为圆球形,平均粒径为20 nm.在波长为980 nm半导体激光器激发下产生绿色和红色的上转换荧光;改变Yb3+,Er3+的掺杂比例,激发产生的绿光和红光的荧光强度随Yb3+,Er3+掺杂比例的改变而发生变化.  相似文献   

19.
为提高聚合物光波导放大器的增益性能,利用高温法合成了BaLuF5∶Yb3+,Er3+纳米晶,并分别对纳米晶的形貌、晶体结构和近红外发射特性进行了表征.测试结果表明,纳米晶平均粒径为13 nm,并在1 530 nm处具有较强的发射,荧光半高宽为50 nm.将合成的纳米晶掺杂入SU-8聚合物作为光波导放大器的芯层材料,使用光刻显影等工艺,在表面长有二氧化硅的硅衬底上制备出了聚合物光波导放大器.当980 nm波长泵浦光功率为280 mW、信号光波长为1 530 nm且功率为0.1 mW时,在长度为1.1 cm的光波导放大器中,获得了3.95 dB的相对增益.  相似文献   

20.
采用水热法合成了粒径约为10nm的近似球形NaYF_4∶Yb,Er上转换荧光纳米晶.利用所合成的上转换纳米晶为荧光探针,通过荧光的内滤效应,酸性品红能有效地猝灭NaYF_4∶Yb,Er的荧光.基于此,构建了酸性品红检测传感器.实验中对孵化时间和p H等条件进行了优化.在最佳测定条件下,酸性品红浓度在13. 3×10-5~66. 7×10-5mol/L范围内与上转换纳米晶的荧光强度呈现良好的线性关系,方法的检出限为1. 7×10-5mol/L(S/N=3),相对标准偏差为3. 6%.最后,所构建传感器用于实际水样中酸性品红的检测,获得满意的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号