首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
通过分析蛛形图的结构和计算它的组合度,利用穷举法和组合分析法研究了蛛形图的D(2)-点强可区别的全染色.通过构造具体染色,得到了蛛形图的D(2)-点强可区别的全色数.  相似文献   

2.
图的染色问题是图论研究的经典领域,在网络结构和实际生活中都有着广泛的应用,随着计算机和通讯、电力网络的日益发展,染色问题成为近年来图论研究的热点.图的D(β)-点可区别全染色又是染色问题中的难点.通过分类讨论、归纳探究,在图的点边集合与色集合间构造了一种一一对应关系.讨论了幂图Pkn(k=2,3)的点可区别全染色,使得距离不大于3(D(3))的任意2点都有不同的色集合,得到幂图Pkn(k=2,3)的D(3)-点可区别全染色数.  相似文献   

3.
所谓图的D(β)-点可区别全染色是指图G的一个正常全染色且使得距离不大于β的任意2点有不同的色集合.文献[2]讨论了图的距离等于2和3的点可区别全染色,文献[3]讨论了图的距离等于4的点可区别全染色.本文主要讨论了圈的D(5)-点可区别的全染色.  相似文献   

4.
一类联图的点可区别全色数与邻点可区别全色数   总被引:1,自引:0,他引:1  
研究了一类联图KnVG的点可区别与邻点可区别全染色。证明了|V(G)|=n≥2时,则KnVG的点可区别与邻点可区别全染色均为2n+1。其中蚝VG为n阶完全图疋与简单图G的联图。  相似文献   

5.
关于图的可区别染色的研究起源于移动通信的频率分配问题.本文定义了简单图G的一个4-邻点可区别全染色.对一个图G进行4-邻点可区别全染色所需的最少颜色数称为图G的4-邻点可区别全色数,记为x〃_(4as)(G).对于广义Petersen图P(n,k),6≤x〃_(4as)(P(n,k))≤7得到证明.  相似文献   

6.
应用构造具体染色的方法得到了两类3-正则图的邻点可区别E-全色数,进一步验证了关于图的邻点可区别E-全染色的猜想.  相似文献   

7.
单图G的D(β)-点可区别正常全染色是指图的距离不超过β的任意两点的色集合都不同的正常全染色,所谓两点u,v间的距离是指这两个点之间的最短路的长,记为d(u,v).D(β)-点可区别正常全色数是对图G进行D(β)-点可区别正常全染所需最小色数.给出了当β=1,2时广义Mycielski图Mn(P3m)的D(β)-点可区别正常全色数.  相似文献   

8.
 邻点可区别全染色是在正常全染色的定义下,使得任两相邻顶点的色集不同。设G(V,E)为一个简单图,f为G的一个k-邻点可区别全染色,若f满足||Vi∪Ei|-|Vj∪Ej||≤1(i≠j),其中,Vi∪Ei={v|f(v)=i}∪{e|f(e)=i},记C(i)=Vi∪Ei,则称f为G的k-均匀邻点可区别全染色,简记为k-EAVDTC,并称χeat(G)=min{k|G存在k-均匀邻点可区别全染色}为G的均匀邻点可区别全染色数。本文给出了路、圈、风车图K t 3、图Dm,4和齿轮图■n的均匀邻点可区别全染色,以及它们的均匀邻点可区别全色数的确切值。  相似文献   

9.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k)的映射f满足:对任意uυ,υw∈E(G),u≠w,有f(uv)≠f(υw);对任意uυ∈E(G),有,(u)≠,(υ),f(u)≠f(uυ),f(υ)≠f(uυ);那么称f为G的k-正常全染色,若,还满足对任意uυ∈E(G),有C(u)≠C(υ),其中C(u)={(u))∪{f(uυ)|uυ∈E(G),υ∈V(G)),那么称,为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色)为G的邻点可区别的全色数,记作xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

10.
设G是简单图,f是从V(G)UE(G)到{1,2,…,k)的一个映射.对每个u∈y(G),令c(u)={f(u)}v∈V(G),uv∈ E(G)}.如果,是k-正常全染色,且对任意u,v∈V(G)(u≠v),有c(u)≠c(v),那么称f为图G的k-点可区别全染色(简记为k-VDTC).数χvt(G)=min{k|G-有k—VDTC}称为图G的点可区别全色数.通过应用概率方法,证明了对任意最大度A≥2的图G,χvt(G)≤32(△+1).  相似文献   

11.
研究了圈Cp和完全图Kp的Mycielski’s图的邻强边染色和邻点可区别全染色的问题,得到了如下结果:如果连通图G(V,E)满足Xa'(G)=△(G),则Xa'(Mn(G))=△(Mn(G));圈的Mycielski‘s图的邻强边色数为5;P阶完全图的Mycielski’s图的邻点可区别全染色为2p.  相似文献   

12.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k)的映射f满足:对任意uυ,υw∈E(G),u≠w,有f(uv)≠f(υw);对任意uυ∈E(G),有,(u)≠,(υ),f(u)≠f(uυ),f(υ)≠f(uυ);那么称f为G的k-正常全染色,若,还满足对任意uυ∈E(G),有C(u)≠C(υ),其中C(u)={(u))∪{f(uυ)|uυ∈E(G),υ∈V(G)),那么称,为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色)为G的邻点可区别的全色数,记作xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数.  相似文献   

13.
若一个正常全染色其相邻顶点的色集不同时,就称之为邻点可区别全染色,邻点可区别全染色所用颜色的最小数称为邻点可区别全色数.本文研究了联图Wm∨Pm(n≥4)的邻点可区别全色数。  相似文献   

14.
进一步研究了平方图的邻点全和可区别非正常全染色问题:利用平方图的结构构造了路、圈、毛毛虫、广义星以及最大度为3且不含2度点的树的平方图,通过组合分析法得到上述5类平方图的邻点全和可区别非正常全色数.  相似文献   

15.
图G的IE-全染色f是指对?u,v∈V(G),使得f(u)≠f(v)的一个一般全染色,其中u,v相邻,V(G)是图G的顶点集.设f是图G的IE-全染色,图G的一个顶点x在f下的色集合C(x)是指由x及x的关联边的颜色所构成的集合(非多重集).若图G的任意两个不同顶点的色集合不同,则f称为图G的点可区别的IE-全染色(简记为VDIETC).利用色集合事先分配法、构造染色法及反证法探讨了完全三部图K5,5,p(p≥2028)的点可区别的IE-全染色问题,确定了K5,5,p(p≥2028)的点可区别的IE-全色数.  相似文献   

16.
图G的I-全染色是指若干种颜色对图G的顶点和边的一个分配,使得任意两个相邻的点的颜色不同,任意两条相邻的边的颜色不同.在图G的一个I-全染色下,G的任意一个点的色集合是指该点的颜色以及与该点相关联的全体边的颜色构成的集合.图G的一个I-全染色称为是邻点可区别的,如果任意两个相邻点的色集合不相等.对一个图G进行邻点可区别I-全染色所用的最少颜色的数目称为图G的邻点可区别I-全色数.本文给出了两类3-正则图的邻点可区别I-全色数.  相似文献   

17.
对图G的一个邻点可区别的I-全染色f,若f还满足任意两种颜色所染元素(点和边)个数最大相差为1,则称f为图G的一个邻点可区别的I-均匀全染色.对图G进行邻点可区别的I-均匀全染色所需最少的颜色数称为图G的邻点可区别I-均匀全色数.研究了图D(C_n),D(S_n),D(F_n),D(W_n)的邻点可区别I-均匀全染色,通过函数构造法,得到了其的邻点可区别I-均匀全色数,并验证了其满足猜想:χ■(G)≤Δ(G)+2.  相似文献   

18.
设G为简单图.设f是图G的一个一般全染色,若对图G的任意两个不同的顶点u、v,有C(u)≠C(v),则称f为图G的一般点可区别全染色(简记为GVDTC).对图G进行一般点可区别全染色所需要的最少颜色数称为图G的一般点可区别全色数.将一类含有4-圈的单圈图悬挂边的染色按从小到大的顺序排列,探讨了它的一般点可区别全染色,确定了它具有一般点可区别全染色,并得到了它的一般点可区别全色数.  相似文献   

19.
中间图的邻点可区别全染色   总被引:1,自引:0,他引:1  
设G是简单连通图,G的k-正常全染色f称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同,称f为G的k-邻点可区别全染色,这样的k中最小者称为G的邻点可区别全色数,本文考虑了图的中间图的邻点可区别全色数,并确定了路、圈、星图和扇图的中间图的邻点可区别全色数.  相似文献   

20.
设G是阶数不小于3的简单连通图,G的k-正常全染f色称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同。这样的愚中最小者称为是G的邻点可区别全色数。得到了花图的邻点可区别全色数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号