首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we examine differentiation of the intestinal cell line Caco-2 following exposure to sodium butyrate (NaBT), using alkaline phosphatase (ALP) activity and carcinoembryonic antigen (CEA) levels as markers of differentiation. We show that acetylcholinesterase (AChE) activity and RNA levels increase during differentiation. Treatment with AChE inhibitors or knockdown of AChE levels by shRNA markedly decrease ALP and CEA levels in a concentration- and time-dependent manner. Finally, our observations suggest that NaBT-induced differentiation of intestinal cells involves AChE-induced cell cycle arrest.  相似文献   

2.
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt–villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.  相似文献   

3.
Intestinal morphogenesis and differentiation are dependent on heterotypic cell interactions between embryonic epithelial cells (endoderm) and stromal cells (mesenchyme). Extracellular matrix molecules represent attractive candidates for regulators of these interactions. The structural and functional diversity of the extracellular matrix as intestinal development proceeds is demonstrated by 1) spatio-temporal specific expression of the classically described constituents, 2) the finding of laminin and collagen IV variants, 3) changes in the ratio of individual constituent chains, and 4) a stage-specific regulation of basement membrane molecule production, in particular by glucocorticoids. The orientation/assembly of these extracellular matrix molecules could direct precise cellular functions through interactions via integrin molecules. The involvement of extracellular matrix, and in particular basement membrane molecules in heterotypic cell interactions leading to epithelial cell differentiation, has been highlighted by the use of experimental models such as cocultures, hybrid intestines and antisense approaches. These models allowed us to conclude that a correct elaboration and assembly of the basement membrane, following close contacts between epithelial and fibroblastic cells, is necessary for the expression of differentiation markers such as digestive enzymes.  相似文献   

4.
5.
Immunological memory allows for rapid and effective protective immunity to previously encountered pathogens. New insights in understanding specific memory differentiation and function have now indicated that in addition to providing enhanced immunity, an important purpose of immunological memory is to provide immediate protection at all sites of the body, including non-lymphoid tissues. Effector memory CD8 T cells have the capacity to reside long-term at epithelial surfaces, where they allow for rapid containment of the invading pathogens at the local entry site and prevent systemic spreading and excessive immune responses. The accumulation of tissue-specific memory T cell subsets, together with cross-reactivity of these antigen-experienced T cells even to unrelated pathogens, provides flexibility and expansion of their specificity repertoire that over time greatly surpasses that of the declining na?ve T cell populations. This review will discuss new insights into T cell memory. We will focus in particular on the generation and function of effector memory CD8 T cells at the intestinal mucosa, which represents one of the largest entry sites for pathogens.  相似文献   

6.
In the course of the last decades, metabolism research has demonstrated that adipose tissue is not an inactive tissue. Rather, adipocytes are key actors of whole body energy homeostasis. Numerous novel regulators of adipose tissue differentiation and function have been identified. With the constant increase of obesity and associated disorders, the interest in adipose tissue function alterations in the XXIst century has become of paramount importance. Recent data suggest that adipocyte differentiation, adipose tissue browning and mitochondrial function, lipogenesis and lipolysis are strongly modulated by the cell division machinery. This review will focus on the function of cell cycle regulators in adipocyte differentiation, adipose tissue function and whole body energy homeostasis; with particular attention in mouse studies.  相似文献   

7.
Chemical modifications of RNA have been attracting increasing interest because of their impact on RNA fate and function. Therefore, the characterization of enzymes catalyzing such modifications is of great importance. The RNA cytosine methyltransferase NSUN3 was recently shown to generate 5-methylcytosine in the anticodon loop of mitochondrial tRNAMet. Further oxidation of this position is required for normal mitochondrial translation and function in human somatic cells. Because embryonic stem cells (ESCs) are less dependent on oxidative phosphorylation than somatic cells, we examined the effects of catalytic inactivation of Nsun3 on self-renewal and differentiation potential of murine ESCs. We demonstrate that Nsun3-mutant cells show strongly reduced mt-tRNAMet methylation and formylation as well as reduced mitochondrial translation and respiration. Despite the lower dependence of ESCs on mitochondrial activity, proliferation of mutant cells was reduced, while pluripotency marker gene expression was not affected. By contrast, ESC differentiation was skewed towards the meso- and endoderm lineages at the expense of neuroectoderm. Wnt3 was overexpressed in early differentiating mutant embryoid bodies and in ESCs, suggesting that impaired mitochondrial function disturbs normal differentiation programs by interfering with cellular signalling pathways. Interestingly, basal levels of reactive oxygen species (ROS) were not altered in ESCs, but Nsun3 inactivation attenuated induction of mitochondrial ROS upon stress, which may affect gene expression programs upon differentiation. Our findings not only characterize Nsun3 as an important regulator of stem cell fate but also provide a model system to study the still incompletely understood interplay of mitochondrial function with stem cell pluripotency and differentiation.  相似文献   

8.
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.  相似文献   

9.
10.
Filamentous bodies have been identified in the glomerular cells of human kidney biopsies. These structures have a close morphological resemblance to ciliary rootlets, although the cells of the glomerular tuft only occasionally bear cilia. Their significance could be, as for cilia, of a cellular disdifferentiation of a pathological cellular proliferation.  相似文献   

11.
Hedgehog signaling in pancreas development and disease   总被引:6,自引:0,他引:6  
Since its discovery, numerous studies have shown that the Hedgehog (Hh) signaling pathway plays an instrumental role during diverse processes of cell differentiation and organ development. More recently, it has become evident that Hh signaling is not restricted to developmental events, but retains some of its activity during adult life. In mature tissues, Hh signaling has been implicated in the maintenance of stem cell niches in the brain, renewal of the gut epithelium and differentiation of hematopoietic cells. In addition to the basal function in adult tissue, deregulated signaling has been implicated in a variety of cancers, including basal cell carcinoma, glioma and small cell lung cancer. Here, we will focus on the role of Hh signaling in pancreas development and pancreatic diseases, including diabetes mellitus, chronic pancreatitis and pancreatic cancer. Received 5 August 2005; received after revision 4 November 2005; accepted 22 November 2005  相似文献   

12.
Summary Filamentous bodies have been identified in the glomerular cells of human kidney biopsies. These structures have a close morphological resemblance to ciliary rootlets, although the cells of the glomerular tuft only occasionally bear cilia. Their significance could be, as for cilia, of a cellular disdifferentiation of a pathological cellular proliferation.  相似文献   

13.
14.
Paneth cells (PCs) were described over a century ago as granulated cells located at the base of small intestinal crypts, the 'crypts of Lieberkühn.' Various histochemical staining procedures were developed that identified PCs based on their distinctive granule staining pattern. Early on, PCs were proposed to perform a specialized function other than absorption of digested nutrients, the predominant task of the small intestinal epithelium. Since then, many constituents of the PC granules have been biochemically characterized. The presence of various granule-associated antimicrobial substances and their release upon microbial challenge suggest that PCs function as specialized defense cells in the small intestine. Altered resistance to microbial infection in animal models with disrupted or augmented PC function provides further support for the host defense role of PCs. Other PC components suggest that PCs may also participate in the regulation of lumenal ionic composition, crypt development, digestion, and intestinal inflammation. Received 6 June 2001; received after revision 26 July 2001; accepted 27 July 2001  相似文献   

15.
Trichomes as models for studying plant cell differentiation   总被引:2,自引:0,他引:2  
Trichomes, originating from epidermal cells, are present on nearly all terrestrial plants. They exist in diverse forms, are readily accessible, and serve as an excellent model system for analyzing the molecular mechanisms in plant cell differentiation, including cell fate choices, cell cycle control, and cell morphogenesis. In Arabidopsis, two regulatory models have been identified that function in parallel in trichome formation; the activator–inhibitor model and the activator–depletion model. Cotton fiber, a similar unicellular structure, is controlled by some functional homologues of Arabidopsis trichome-patterning genes. Multicellular trichomes, as in tobacco and tomato, may form through a distinct pathway from unicellular trichomes. Recent research has shown that cell cycle control participates in trichome formation. In this review, we summarize the molecular mechanisms involved in the formation of unicellular and multicellular trichomes, and discuss the integration of the cell cycle in its initiation and morphogenesis.  相似文献   

16.
The highly conserved Notch signaling pathway plays pleiotropic roles during embryonic development and is important for the regulation of selfrenewing tissues. The physiological functions of this signaling cascade range from stem cell maintenance and influencing cell fate decisions of barely differentiated progenitor cells, to the induction of terminal differentiation processes, all of which have been found to be recapitulated in different forms of cancers. Although Notch signaling has mostly been associated with oncogenic and growth-promoting roles, depending on the tissue type it can also function as a tumor suppressor. Here we describe recent findings on Notch signaling in cancer and tumor angiogenesis, and highlight some of the therapeutic approaches that are currently being developed to interfere with tumor growth and progression. Received 2 April 2007; received after revision 29 June 2007; accepted 2 July 2007  相似文献   

17.
The Wnt/beta-catenin/TCF4 pathway plays critical roles in the maintenance of small intestinal epithelium; however, downstream targets of the beta-catenin/TCF4 complex are not extensively characterized. We identified miR-30e as an immediate target activated by the beta-catenin/TCF4 complex. miR-30e was detected in the peri-nuclear region of the intestinal crypt IEC-6 cells. Bioinformatics analysis revealed clustered beta-catenin/TCF4 binding sites within the miR-30e promoter region. This promoter region was cloned into pGL3-control luciferase reporter vector, with the enhancer region removed. Transfection of pCMV-SPORT6-beta-catenin expression vector dose-dependently increased luciferase activity, and co-transfection of pCMV-SPORT6-TCF4 expression vector further enhanced the promoter activity. Dexamethasone-induced IEC-6 cells differentiation caused a 2.5-fold increase in miR-30e expression, and upon beta-catenin siRNA transfection, miR-30e increased 1.3-fold. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay confirmed the binding between beta-catenin/TCF4 complexes from IEC-6 nuclear extracts and the putative sequences in the miR-30e promoter. These results demonstrate that beta-catenin/TCF4 transactivates miR-30e during intestinal cell differentiation.  相似文献   

18.
19.
Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.  相似文献   

20.
In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号