首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
拟Abel环   总被引:2,自引:0,他引:2  
设R是一个环,M是双R-模.若对每个e∈E(R),有eR(1-e)Me=eM(1-e)Re=0,则称M为拟Abel模,这里E(R)表示R的幂等元集合.若R-双模R是拟Abel的,则称R为拟Abel环.证明了如下结果:①R为拟Abel环当且仅当对任意的a∈N(R),e∈E(R),ea=0蕴涵eRae=0,这里N(R)表示R的幂零元集合;②R为Abel环当且仅当R为幂零自反环和拟Abel环;③设σ为环R的环自同态映射且满足条件: e∈E(R),σ(e)=e,则R为拟Abel环当且仅当R(σ)为拟Abel模.  相似文献   

2.
交换环上的极大性内射模   总被引:3,自引:2,他引:1  
设R是交换环,■表示R的极大理想生成的乘法系,M是R-模.若对R的任何极大理想m,有ExtR1(R/m,M)=0,则M称为极大性内射模.若R自身为极大性内射模,则R称自极大性内射环.若对J∈■,x∈M,由Jx=0能推出x=0,则M称为■-无挠模.证明了在Dedekind整环上,M是极大性内射模当且仅当M是内射模.指出若R的极大理想都是有限生成的,则每个■-无挠模存在极大性内射包络.还证明了若R是■-无挠的自极大性内射模,则自反模是极大性内射模,且非极大素理想都是极大性内射模;若还有R的每个极大理想是有限生成的,则自由模与投射模是极大性内射模.最后,证明了在MFG整环上,平坦模是极大性内射模.  相似文献   

3.
设R是环,F∞表示平坦维数有限的左R-模类.左R-模M称为∞-余纯投射模,指对任意N∈F∞都有Ext1R(M,N)=0.证明∞-余纯投射模M是投射模当且仅当M∈F∞,同时证明当l.FFD(R)=0时,余纯投射模是∞-余纯投射模.用∞-余纯投射模刻画QF环和CPH环,证明R是QF环当且仅当每一左R-模是∞-余纯投射模,当且仅当每一N∈F∞是内射模.也证明了R是CPH环当且仅当∞-余纯投射左R-模的子模是∞-余纯投射模,当且仅当每一N∈F∞的内射维数不超过1.  相似文献   

4.
设R是任何环,L是R-模.若对任何平坦维数有限的模M,有Ext_R~1(M,L)=0,则L称为强余挠模.证明(F_∞,SC)是余挠理论当且仅当l.FFD(R)∞,其中F_∞和SC分别表示平坦维数有限的模类和强余挠模类.还证明若w.gl.dim(R)∞,则强余挠模是内射模.最后证明每一R-模是强余挠模当且仅当R是左完全环,且l.FFD(R)=0.  相似文献   

5.
研究了small-内射模和small-内射环的性质,证明了若R是约化的左small-内射环,记S=eRe,e~2=e∈R,则S是约化的左JP-内射环.用单奇异左(右)R-模的small-内射性刻画了半本原环,证明了R是半本原环当且仅当任意单奇异左(右)R-模是small-内射的.得到了在R是半局部环的条件下,以下叙述等价:(1)R是半单环;(2)R是正则环;(3)任意单奇异左(右)R-模是small-内射的;(4)R是半本原环.通过对环的极大左(右)零化子的研究,分别得出了若0≠a∈R,l(a)是R的极大左零化子,则l(a)=l(a~2);若0≠a∈R,r(a)是极大右零化子,则对任意0≠at∈R,有l(a)=l(at),并证得了若R是左small-内射环,且对0≠a∈J,l(a)(r(a))是R的极大左(右)零化子,则a是非零幂零元.  相似文献   

6.
设A、B是环,M是B-A-双模,称T=(A 0M B)是形式三角矩阵环.设R是任何环,N是R-模,若对R的任意伪凝聚模M,有Ext_R~1(M,N)=0,则称N是PC-内射模.借助有限表现模的性质刻画形式三角矩阵环的凝聚性,证明若M是有限表现右A-模,则T是右凝聚环当且仅当A和B都是右凝聚环.讨论形式三角矩阵环上的模的性质,证明若T是右凝聚环,M是有限表现右A-模,则有右T-模(X,Y)_f是PC-内射模当且仅当X是PC-内射A-模,ker f是PC-内射B-模,且f是满同态.  相似文献   

7.
令(R,m,k)是Cohen-Macaulay局部环,M,N是有限生成R-模.假设N∈ΩCM(R),且ExtR1≤i≤d(M,N)=0,证明HomR(M,N)∈ΩCM(R),并给出有限生成模N是canonical模的条件.  相似文献   

8.
设R是交换环,M是R-模,I是R的有限生成理想,满足∩∞n=0In=0,R^是R的I-adic完备化,M^是M的I-adic完备化.证明了若R是凝聚环,则R^是平坦R-模,且若I(∈)J(R),则R^还是忠实平坦R-模.由此证明了若R^(×)RM是有限生成(有限表现或有限生成投射)的R^-模,则M是有限生成(有限表现或有限生成投射)R-模.最后用Swan的方法证明了若R是凝聚整环,u∈J(R)是素元,∩∞n=0(un)=0,M是不可分解的有限生成投射R-模,则M/uM是不可分解的投射R/(u)-模.  相似文献   

9.
关于模的主理想定理   总被引:1,自引:1,他引:0  
设R是整环,S=R-0.设M是无挠R-模,N是M的子模,且rank(M)=n,rank(N)=I相似文献   

10.
设R是交换环,U表示R的极大w-理想生成的理想乘法系.引入U-无挠模和U-内射模的概念,举例说明U-内射模未必是内射模,证明U-无挠的R-模M是U-内射模当且仅当对任何正合列0→M→F→C→0,若F是U-内射模,则C是U-无挠模.证明若R是唯一分解整环,则肘是U-内射模当且仅当M是F_w(R)-内射模.也证明了若R是Krull整环,M是w-模,则M是内射模当且仅当M是U-内射模.  相似文献   

11.
利用Morita系统环上(右)模的分解,讨论其上模的本质子模和多余子模的结构.对于Morita系统环■,每个右T-模都可以分解为一个四元对(P,Q)_(f,g),给出其上的一致模和hollow模的结构刻画,并给出(P,Q)_(f,g)是一致(hollow)模的必要条件.记L={p∈P g(p■m)=0,■m∈M},K={q∈Q f(q■n)=0,■n∈N},证明:1)若P=0,且K=Q是一致模(或Q=0,且P=L是一致模),则(P,Q)_(f,g)是一致模;2)若P和Q是hollow模,且f(Q■N)=P,g(P■M)≠Q(或f(Q■N)≠P,g(P■M)=Q),则(P,Q)(f,g)是hollow模.  相似文献   

12.
K-弱补模     
作为弱补模的真推广,引入K-弱补模的概念并给出K-弱补模的基本性质.证明K-弱补模的任意直和项是K-弱补模.设M=in=1Mi,Mi(i=1,2,…,n)是M的完全不变子模.若Mi(i=1,2,…,n)是K-弱补模,则M是K-弱补模.设R是环.若J(R)=0,则RR是K-弱补模当且仅当R是左PP-环.  相似文献   

13.
R=σ∈GRσ是有单位元1的交换的G-分次环(在G不需言明时就称R为分次环),并且引入了分次环上的分次w-模等相关概念.证明了:1)设J是R的有限生成分次理想,则J∈GVgr(R)当且仅当J∈GV(R);2)设M是分次模,σ∈G.若M是分次GV-无挠模(或分次GV-挠模),则M(σ)也是分次GV-无挠模(或分次GV-挠模);3)设M是分次模,且是w-模,N是M的分次子模,则N是分次w-模当且仅当N是w-模.特别地,R中的任何分次w-理想都是w-理想.  相似文献   

14.
设R是有单位元的交换环,M是R-模,如果对M的任意子模N,存在R的理想I,使得N=I·M,则称M是乘法R-模,本文主要结论是:设M=Rx_1+…+Rx_(?),其中x_i=(a_(1i),a_(2i),…,a_(?))∈R~(1×n),i=1,2,…,n,并且sum from i=1 to (?)a_(ii)=1,那么当R是下列环之一时:(1)整环;(2)半局部环;(3) J(R)=0,有:M是乘法R-模当且仅当F_2(A)=0,其中F_2(A)表示矩阵A=(a_(ij)_(?)中一切2阶子式在R中生成的理想。  相似文献   

15.
引入ZP-平坦右模来刻画左非奇异环.设R是环,右R-模N称为ZP-平坦模,是指对任意a∈Z(RR),有TorR1(N,R/Ra)=0;左R-模M称为ZP-内射模,是指对任意a∈Z(RR),有Ext1R(R/Ra,M)=0.证明了关于ZP-平坦模的Lambek准则,即右R-模N是ZP-平坦模当且仅当其特征模N+是ZP-内射模.还证明了R是左非奇异环当且仅当任意右R-模是ZP-平坦模当且仅当内射左R-模的商模是ZP-内射模.  相似文献   

16.
设R是任何环,M是R-模.S是包含在R的中心内的非零因子乘法封闭集,对任意的非零因子u∈S,Ext1R(R/Ru,M)=0,则称M是S-可除模;若对任何S-正则左理想I,Ext1R(R/I,E)=0,则称E是S-正则内射模.环R称为S-Noether环,是指R的S-正则左理想是有限生成的.交换环R称为S-Dedekind环,是指R的任何S-正则理想是可逆理想.讨论S-Noether环的基本性质,并用S-可除模来刻画SDedekind环,证明R是S-Dedekind环当且仅当S-可除模是S-正则内射模.  相似文献   

17.
研究了w-平坦模与w-投射模的直和性质,分别给出了PVMD与w-平坦模、Krull整环与w-投射模之间的关联.此外,讨论了正合列中的w-平坦模.证明了若R是整环,0→N→F→M→0是无挠R-模正合列,其中N,F是平坦模,则M是w-平坦模当且仅当对R的任何w-理想I,N∩IF=IN,当且仅当对R的任何有限型w-理想I,N∩IF=IN.  相似文献   

18.
设R是交换环,u∈R是非零因子.引入u-Matilis余挠模的概念:设L是R-模,若Ext■(Ru,L)=0,则L称为u-Matlis余挠模.利用u-Matilis余挠模的相关性质给出G-整环的模刻画,证明G-整环是Matlis整环.  相似文献   

19.
设R为一结合环。若对任意x,y∈R均有依于x,y的整系数多项式其中a_n … a_1=0,且有整数m(x,y)>1,使则R的Jacobson根N即为R的全部幂零元集,而R为N与一个(?)_(1-)环的直接和。于是,R是交换的,当且仅当N是交换的。  相似文献   

20.
研究满足零因子性质的幂级数McCoy环、相对于幺半群的McCoy环和相对于幺半群的Armendariz环.得到了若R是交换的幂级数McCoy环,则R[x],R[z,z^-1]是McCoy环.对于整域R和R-模N,证明了R+N是幂级数McCoy环当且仅当N是右幂级数McCoy R-模.对于幺半群M,证明了若∏(i∈I) Ri是M-McCoy环,则每个环昆是M-McCoy环.同时给出了R[M]是Armendariz环和R[x]是M—Armendariz环的充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号