首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
具有径向基网络加速度反馈的磁浮列车悬浮系统滑模控制   总被引:1,自引:1,他引:0  
为了保证磁浮列车的悬浮稳定性,研究了悬浮系统的主动控制问题。首先,基于磁浮列车单电磁铁最小悬浮单元建立了对应的电流控制数学模型,并结合仿真说明了比例?积分?微分(PID)控制算法对非线性负载等时变干扰非常敏感的问题;然后,提出了一种采用分岔理论稳定性证明的滑模控制方法,并结合径向基函数(RBF)神经网络的参数自调整功能构建了具有振动抑制的悬浮控制模块,有效地抑制了电磁铁振动;最后,通过构造Simulink控制模型并搭建单电磁铁悬浮试验平台进行仿真和试验。结果表明:电磁铁振动对悬浮性能的影响尤为明显,所提出控制算法能够在复杂扰动存在的情况下对电磁铁振动进行有效抑制,并提高悬浮系统的动态性能。  相似文献   

2.
针对电机磁轴承径向力控制的严重非线性,提出了利用神经网络自适应整定PID参数,从而直接调节磁轴承径向悬浮绕组电流实现转子径向稳定悬浮的控制方案.在利用BP神经网络结合PID控制实现转子径向稳定悬浮的基础上,为改善径向位移跟踪的动静态性能,提出了基于柔性神经网络的径向力控制,给出了详细的控制算法,并仿真比较了柔性神经网络控制与BP神经网络控制下转子在空载和突加负载时径向悬浮情况,仿真结果表明柔性神经网络控制具有更好的动静态性能,为智能控制的进一步应用研究提供了基础.  相似文献   

3.
研究一类非线性对象的建模,提出通用的非线性U模型表达式。在非线性U模型基础之上,提出径向基神经网络PID控制算法,采用梯度下降法与PID位置增量算法相结合,根据径向基神经网络在线辨识非线性被控对象,得出Jacobian信息去修正PID控制器参数,最终完成非线性系统的精确控制。仿真结果证实,采用高精度的非线性U模型及神经网络PID控制算法提高了非线性控制系统的精度。  相似文献   

4.
针对末端负载质量变化的柔性连杆机械臂运动轨迹跟踪控制问题,提出了一种结合径向基神经网络(RBFNN)和干扰观测器(DOB)的复合学习控制方法。利用RBFNN逼近连杆柔性引起的非线性不确定性,构造DOB实时估计包括负载变化、非线性摩擦、RBFNN逼近误差等效应的集中干扰,将两者用于控制器的前馈补偿设计以提升系统跟踪性能,同时设计鲁棒反馈控制律保证系统的稳定性。通过Lyapunov稳定性理论证明了所提控制方法可保证跟踪误差的有界性和闭环系统的稳定性。基于柔性机械臂平台的对比实验结果表明:所提控制方法在不同负载下可以保持跟踪精度在0.5%以内,负载变化引起的误差变化不超过2%;与仅使用神经网络的控制方法相比,跟踪性能提升了24.7%。  相似文献   

5.
研究一类非线性对象的建模,提出通用的非线性U模型表达式。在非线性U模型基础之上,提出径向基神经网络PID控制算法,采用梯度下降法与PID位置增量算法相结合,根据径向基神经网络在线辨识非线性被控对象,得出Jacobian信息去修正PID控制器参数,最终完成非线性系统的精确控制。仿真结果证实,采用高精度的非线性U模型及神经网络PID控制算法提高了非线性控制系统的精度。  相似文献   

6.
负载扰动下磁浮车辆多点悬浮建模与控制   总被引:1,自引:0,他引:1  
以同济大学磁浮交通工程技术研究中心研制的低速磁浮车辆为研究对象,研究非线性时变扰动下多点悬浮的控制算法设计及优化问题。建立多点悬浮的非线性数学模型,并基于交叉耦合控制算法对各个悬浮点的输出误差进行补偿。与单点比例-积分-微分(PID)控制算法的比较结果表明,基于交叉耦合的反馈控制算法,能够克服以往基于假设完全解耦设计出的控制算法的不足,具有较高的控制精度和较强的鲁棒性。最后,通过试验验证负载扰动下交叉耦合反馈控制算法的有效性。  相似文献   

7.
针对单自由度磁悬浮系统的非线性、不确定性和易受扰动等特点,提出一种基于扩张状态观测器的反步控制方法以提高系统的控制性能。在系统受到不确定性扰动的情况下,运用扩张状态观测器实时估计悬浮球的位置、速度和扰动信息,并将这种估计值与控制器设计相结合,然后采用反步法设计磁悬浮球的悬浮位置跟踪控制律,以Lyapunov方法证明系统的跟踪误差最终有界收敛。仿真结果表明,ESO-BS控制与PID控制相比,前者系统调节时间为0.01 s,后者调节时间为0.08 s,明显偏长,因此,ESO-BS控制的动态特性要优于PID控制。在系统存在不确定性的条件下,所设计的控制律能实现磁悬浮球的稳定悬浮,并能根据要求的悬浮高度位置实现位置跟踪。  相似文献   

8.
针对含有不确定非线性扰动项的一类非线性系统,结合支持向量回归理论,采用Backstep-ping控制方法设计自适应非线性控制器.在分析满足Backstepping设计条件的一类非线性系统结构形式的基础上,应用支持向量回归辨识并补偿系统不确定项及未知扰动,基于Lyapunov稳定性理论,选取Lyapunov函数,证明闭环系统最终一致有界,且跟踪误差指数收敛.通过对典型系统仿真分析表明,相比于径向基神经网络自适应Backstepping控制方案,支持向量回归因其内部参数由训练优化产生,不依赖先验经验及外界干预,适应性较好,对参考指令信号跟踪收敛快,稳态误差小,控制方案有效,且系统具有一定鲁棒性.  相似文献   

9.
文章针对电液伺服系统的非线性、不确定性和参数时变的特点,提出一种基于神经网络的并行自学刁控制算法。该控制策略以系统动态误差和给定信号量作为小脑模型神经网络控制器的激励信号,并与单神经元自适应PID控制器相结合构成系统的复合控制。仿真结果表明,该并行控制算法较常规PID控制具有更快的响应特性和良好的动态特性,对模型参数变化和负载扰动表现出更强的适应性和鲁棒性。  相似文献   

10.
提出一种广义Backstepping控制算法和基于广义Backstepping的径向基传输函数(RBF)神经网络控制策略,分析了闭环系统的Lyapunov稳定性和系统跟踪误差的一致有界性.并通过仿真实验验证了所提控制方法的正确性和有效性。  相似文献   

11.
提出了基于人工智能负载估计系统的磁浮列车悬浮系统主动控制方法。给出单点悬浮数学模型,并基于劳斯-赫尔维兹判据证明该模型开环不稳定;考虑负载特征和实时悬浮变化,利用多层人工神经网络对悬浮系统控制量的输出进行主动控制;采用非支配排序遗传算法(NSGA)对系统参数进行优化。结果表明:所提出的控制方法具有较好的鲁棒性,在较大负载扰动时仍然能够保持相对较小的误差。  相似文献   

12.
针对机器人关节控制输入受限以及动力学模型中存在非线性摩擦、柔性变形和未知外部干扰力矩等问题,提出了一种基于径向基函数(radial basis function, RBF)神经网络的输入饱和指令滤波自适应控制方法。基于指令滤波反步法,采用饱和函数约束控制输入的幅值,使用RBF神经网络在线逼近未知干扰,并利用Lyapunov稳定性理论证明了闭环系统的所有误差最终一致有界。仿真结果表明,控制算法不仅使系统的控制输入幅值被严格约束在规定的范围之内,完成了对目标轨迹的高精度跟踪(跟踪误差约为±0.003 rad),而且还可抵抗外部阶跃干扰力矩和建模误差对控制系统的不良影响,保证系统的高精度与强鲁棒性,性能优于PID (propotional integral derivative)控制和普通指令滤波反步控制(command filter backstepping control, CFBC),对机器人关节在高精度领域应用与智能控制具有重要价值。  相似文献   

13.
研究动态网络中间节点的拥塞控制. 提出一种PID型神经网络的主动队列管理(AQM)算法,给出基于BP学习规则的网络参数自调整规律,根据Lyapunov定理证明了系统的稳定性. 基于NS$-2平台的仿真结果表明,该算法适应瞬息万变的网络环境,系统稳态误差和响应速度等指标优于PID算法.  相似文献   

14.
机械手的神经网络直接离散时间自适应控制算法   总被引:1,自引:0,他引:1  
提出了一种机械手的神经网络直接离散时间自适应控制算法。该算法是神经网络方法和自适应动态滑动模控制方法的集成。自适应动态滑动模控制的作用有两个:其一是在神经网络控制失灵的情形下提供控制系统的全局稳定性;其二是改善系统的跟随性能。整个系统的全局稳定性和跟随误差的收敛性采用李雅普诺夫稳定性理论进行了证明,并得到了一种新颖的神经网络权值调整算法。  相似文献   

15.
磁悬浮系统是一个典型的不确定、非线性系统.由于磁悬浮系统的复杂性很难建立精确的数学模型,采用RBF神经网络(RBFNN)对非线性磁悬浮系统进行辨识,再根据神经网络自适应控制原理设计了非线性磁悬浮系统的神经网络自适应状态反馈控制器与自适应PID控制器,并利用MATLAB进行了仿真.仿真结果表明,神经网络自适应控制能很好地控制本磁悬浮系统;神经网络自适应控制器对于此非线性磁悬浮系统位置具有良好的控制效果,该控制系统具有较好的稳态特性和控制特性.  相似文献   

16.
为了有效改善多区域互联电网的动态稳定性,提出一种分散式模糊PID负荷频率控制方法.该方法为互联电网每个区域设计一个模糊PID控制器,以区域频率偏差和联络线功率偏差为控制目标,根据区域控制偏差的变化量,运用模糊推理,在线修正PID调节参数,从而控制互联电网快速趋于动态稳定.针对三区域环型互联电网,考虑发电速率的限制,对其负荷扰动和模型参数摄动进行仿真.结果表明:与传统PID算法相比较,所提出的方法具有更强的适应性、鲁棒性及扰动抑制能力,能使系统取得更好的动态控制性能.  相似文献   

17.
根据恒压网络条件下的静液传动系统的特点,建立用于转速控制的二自由度动力学模型.针对恒压网络静液传动系统的参数摄动和不确定性,选择液压泵/马达的角速度和角加速度为控制变量,设计一种神经网络自适应滑模控制器,采用径向基函数神经网络(RBFN)取代滑模切换控制部分,利用其在线学习功能,对系统的不确定因素进行自适应补偿,应用李亚普诺夫稳定性理论推导网络权值的在线自适应率,保证闭环控制系统的稳定性.在模拟试验台上进行了阶跃信号和斜坡信号的转速控制响应分析,并与常规PID控制以及基于神经网络的PID(NNPID)控制进行对比.试验结果表明:所设计的控制器具有良好的控制效果,能使系统具有良好的跟踪性和强的鲁棒性,有效地消除高频抖振现象.  相似文献   

18.
电磁铁的悬浮控制技术是磁浮列车最关键的核心技术之一.但是悬浮系统受到本质非线性和开环不稳定的影响,其控制器的设计一直存在难点和挑战.针对磁浮列车系统的稳定悬浮控制问题,设计了基于反步(Backstepping)法的非线性控制器.首先建立单点悬浮系统的非线性动力学模型,然后利用反步法将系统分成2个子系统并分别对每个子系统提出Lyapunov候选函数.在第一个子系统中设计虚拟控制量,并代入二级子系统的Lyapunov函数中获取出整个系统的控制器,接着利用Lyapunov理论验证系统的稳定性.同时,通过仿真证明:所提出的控制方法不仅具有更好的动态和稳态表现,而且能很好的抑制干扰对悬浮系统的影响.最后通过实验验证了该方法的有效性和可行性,在磁浮列车的悬浮系统方面具有良好应用前景.  相似文献   

19.
为了提高双轮移动机器人运动轨迹追踪精度,采用改进粒子群算法优化BP神经网络PID控制器,并对控制效果进行仿真验证。创建双轮移动机器人模型简图,给出运动轨迹误差方程式。在传统PID控制基础上增加BP神经网络结构,引用粒子群算法并对其进行改进,采用改进粒子群算法优化BP神经网络PID控制调整参数,给出双轮移动机器人PID控制参数优化流程。采用数学软件MATLAB对双轮移动机器人轨迹追踪误差进行仿真验证,并与传统PID控制追踪误差进行对比。仿真曲线显示:在理想环境中,双轮移动机器人采用两种控制方法都能较好地实现轨迹追踪,追踪误差较小;在干扰波形环境中,传统PID控制双轮移动机器人追踪误差较大,而改进PID控制双轮移动机器人追踪误差较小。采用改进粒子群算法优化BP神经网络PID控制器,可以提高移动机器人运动轨迹追踪精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号