首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
根据电磁流体力学的基本理论,研究了在旋转磁场作用下原铝熔体的净化过程·分析了体系的电磁力和重力的影响因素,研究了铝熔体中杂质铁和硅的物理性能·分析表明,原铝中杂质铁以Al3Fe的形式存在,而杂质硅以单质形式存在·在分析了重力、电磁力和离心力的综合作用后,利用电磁力与偏析的共同作用实现了原铝中杂质铁和硅的分离·考查了主要影响因素,即磁场强度、凝固时间、气隙大小和坩埚位置等·研究结果表明,旋转磁场作用下的原铝熔体偏析净化的方法综合了电磁力、重力和偏析的共同作用,它可以使原铝中Fe和Si的质量分数由016%降至005%·  相似文献   

2.
薄带铸轧过程中微观偏析的模拟   总被引:3,自引:0,他引:3  
针对薄带铸轧过程冷却速率大的特点,采用微观偏析模型对碳钢在薄带铸轧过程中溶质元素的微观偏析进行了模拟,通过模拟给出了铸轧凝固过程中固相率随温度的变化规律,固相率仅在很窄的温度范围内迅速增加·同时给出了冷却速率对溶质元素偏析的影响规律,随冷却速率的增加,溶质元素晶间偏析增大,而晶内偏析较小·在此基础上给出了碳钢薄带双辊铸轧过程中凝固终了温度值,为确定铸带凝固终了点的位置及铸轧过程的稳定性提供了有效的数据,为铸轧薄带的质量分析提供了理论依据·  相似文献   

3.
中厚板控制冷却数学模型   总被引:16,自引:0,他引:16  
介绍了中厚板控制冷却过程中所用的数学模型,包括差分模型、空冷和水冷换热系数模型、比热和热传导率模型,并采用有限差分法模拟计算了钢板在冷却过程中厚度、宽度方向上的温度场分布,以及间歇冷却对控制冷却的影响·从模拟结果可以看出,返红时间、厚度上温度梯度随钢板厚度增加而增加;间歇冷却时钢板内部温度呈均匀下降,表面不断冷却与返红过程·在线应用证明该套数学模型计算精度较高,可以满足现场实际生产的要求·  相似文献   

4.
低碳钢表面氧化过程中铜的富集   总被引:1,自引:0,他引:1  
采用低碳钢的氧化速度和铜的扩散速度,通过模型计算了钢材表面高温氧化过程中铜在钢材铁鳞界面处的富集情况·实验在空气中,分别在1000,1100和1200℃温度下氧化试样,用扫描电镜的EDX分析了界面处铜的含量,并用BSE分析了界面附近富集相的图像·结果表明,随温度的升高,铜在界面处的富集程度降低,界面不规则程度增强,铁鳞对铜富集相的阻断作用加强,因而有利于防止铜富集造成的危害  相似文献   

5.
组合电磁搅拌对连铸大方坯内部质量的影响   总被引:6,自引:0,他引:6  
结合包钢炼钢厂大方坯连铸机上进行的组合电磁搅拌的中试,设计了合理的组合电磁搅拌工艺参数,并分别对结晶器搅拌和组合电磁搅拌作用下铸坯的中心疏松和成分偏析情况进行了对比分析·试验结果表明,组合电磁搅拌工艺可以解决高碳钢连铸坯的中心疏松和成分偏析问题,铸坯中心发生集中缩孔的几率和指数降低·因此正确的连铸工艺和优化的组合电磁搅拌工艺对充分发挥电磁搅拌的作用、提高铸坯内部质量至关重要·  相似文献   

6.
轴对称凝固锭中通道偏析的形成与防止   总被引:1,自引:1,他引:0  
用 Pb-5%Sn合金在垂直轴对称凝固的 φ70 mm×120mm圆柱锭上模  拟了大型钢锭中A偏析的形成,研究了A偏析形成的临界导热条件。采用倾  角低速旋转法对轴对称凝固条件下通道偏析的防止作了初步尝试。结果表  明:通道偏析的形成条件是径向温度梯度大于7.5×10-2°C/mm;凝固速度  小于临界凝固速度,临界凝固速度随着温度梯度的降低而降低。倾角低速旋  转可以有效地防止通道偏析的形成。当铸锭沿轴线倾斜22°时,相对于绕垂直  轴旋转,防止偏析所需的转速可降低80%.  相似文献   

7.
在表面冶金过程中等离子束产生感生磁场,使熔池内液态金属产生对流运动。电磁搅拌可以抑制柱状晶的生长,有利于等轴晶的形成。感生磁场具有电磁净化的作用,可以有效地消除杂质颗粒以及偏析、负偏析和气孔形成的机率。同时感生磁场会促进细小亚稳相、纳米晶以及非晶态固体的生成。  相似文献   

8.
锑盐除钴净化工艺研究   总被引:2,自引:1,他引:1  
为寻求降低湿法炼锌溶液净化过程中的锌粉消耗的有效途径 ,研究了两段逆锑净化除钴工艺中净化温度、锌粉加入量、锌粉粒度、搅拌速度等因素对净化效果的影响 .结果表明 ,净化温度和锌粉加入量是影响净化除钴效果的主要因素 ,在锌粉用量≥ 1 .6g·L- 1 、温度 85℃、搅拌速度≥ 30 0r/min、锌粉粒度较细的条件下 ,可使净化后溶液 [Co2 ]≤ 0 .50mg·L- 1 ,这对实际生产有重要的指导意义  相似文献   

9.
采用扫描电镜、透射电镜及其附带的能谱仪和碳复型萃取技术等多种手段研究了不同Hf含量的FGH96合金粉末颗粒显微组织、枝晶间合金元素偏析和析出相.发现Hf含量可以改变粉末颗粒内部树枝晶、胞状长大晶和微晶凝固组织的比例,粉末的快速凝固组织形态主要取决于冷却速率和固液界面前沿温度梯度与长大速度的比值.不同Hf含量的FGH96合金粉末颗粒中,Nb、Ti、Zr和Al均富集于枝晶间,Co、Cr、W和Ni均富集于枝晶轴.当Hf质量分数为0.3%时,Ti、Nb、Zr、Hf等强碳化物形成元素的枝晶偏析程度最小.在快速凝固粉末颗粒中,Hf对氧含量比碳含量更敏感,优先形成更稳定的氧化物HfO2.  相似文献   

10.
82A钢凝固过程中TiN夹杂析出热力学和动力学   总被引:1,自引:0,他引:1  
用热力学和动力学方法研究82A钢液凝固过程元素偏析及其对TiN夹杂析出的影响.热力学分析表明, Ti的偏析比远高于N的偏析比;凝固冷却速度从6 K/min增至600 K/min过程中,凝固冷却速度对Ti、N凝固偏析比影响不大;钢液初始Ti含量降至0.000 2%、初始氮含量为0.002%~0.004%时,在凝固末期仍有TiN夹杂析出.动力学分析表明,随着钢液凝固冷却速度的加快,凝固析出的TiN颗粒尺寸明显变小.  相似文献   

11.
在 Al- 2 2 % Si合金中分别加入 0 .96 % Fe,0 .6 7% Mn和 1% Fe,1.5 0 % Mn;用浇注不同厚度的试样并观察金相组织的方法 ,了解和比较了不同 Mn/ Fe比和不同冷却速度对于合金中 Al- Si- Mn- Fe相形态的影响。研究结果表明 ,随着 Mn含量和冷却速度的提高 ,针状铁相转变为粒状并得到细化。  相似文献   

12.
熔体流动对定向凝固铝合金的溶质分布及组织的影响   总被引:1,自引:0,他引:1  
本文研究了熔体的流动对溶质分布及组织形貌所起的作用:结果表明:流动无论 对溶质的偏析和凝固组织的形貌都发生重大影响.  相似文献   

13.
对菱锰矿酸浸过程的Fe,Al,Si等杂质的溶解行为进行了研究,并用扫描电镜和能谱对其反应机理进行了验证.结果表明:在适当的试验条件下,Si及大部分Fe,Al并不被酸溶解,而是形成残留物层包裹在尚未反应的颗粒表面上.  相似文献   

14.
金属硅的酸洗和氧化提纯   总被引:6,自引:0,他引:6  
为了降低金属硅酸洗的后续工艺难度,在成熟的常温酸洗技术的基础上加上湿氧氧化新技术对金属硅进行提纯.酸洗主要作用是去除大部分裸露在金属硅颗粒表面的金属杂质;而湿氧氧化后,使颗粒内部分凝系数(在硅和二氧化硅系统中的分凝系数)较小的硼在高温下扩散进入二氧化硅中,再腐蚀去除氧化层和其中的杂质.实验表明该方法对硼杂质有明显的提纯作用,提纯后,硼杂质的含量最低为4×10-6.两种技术在工艺上兼容,在提纯目标上互补,是非常有效的低能耗和低成本的提纯方法.  相似文献   

15.
多层喷射沉积过共晶Al-Si-Cu-Mg合金的微观组织及力学性能   总被引:2,自引:2,他引:0  
多层喷射沉积技术具有冷速快、工艺简单、氧化程度低、制备的材料组织细小且分布均匀等特点.而使高硅铝合金充分发挥实用价值的关键是细化初晶硅.作者用多层喷射沉积技术制备了过共晶Al-Si-Cu-Mg合金,并与传统的铸态冶金制备的相同化学成分的合金进行了比较.对合金的沉积坯、热挤压处理后的微观组织进行了观察与分析.结果表明,多层喷射沉积合金的初晶硅大小只有25μm左右.并对合金的拉伸性能、扫描断口进行了测试与观察,提出了合金的强化与断裂机制.  相似文献   

16.
利用铁粉铝粉间的放热化学反应合成了Fe3Al合金,分析比较了热爆、热爆加压和自蔓延三种工艺条件下产物形成过程及组织结构特点,研究表明:合成开始时首先分别在粗大铁粉和细小铁粉处形成含铝富铁。相和n(Fe3Al5)型化合物两种过渡相,热爆合成温度较高,两种过渡相间可充分反应生成成份均匀的a相,并经较快冷却后亚稳定存在于室温;热爆加压合成时,加压系统的吸热不仅使合成反应移到温度较低的B2相区中进行,而且冷却加快使反应后的扩散过程无法充分进行,产物由成份不均匀的B2相和反应后残留的a相组成。  相似文献   

17.
研究间接挤压铸造工艺条件下,浇注温度、挤压压力、挤压速度、冷却速度及参数间的交互作用对6066铝合金中Si元素的偏析影响规律. 以凝固后零件热节位置硅的质量分数与合金初始硅的质量分数的差值定量表征偏析程度,采用考虑一级交互作用的四因素两水平正交设计,研究间接挤压条件下硅的偏析现象. 结果发现:浇注温度、挤压压力、挤压速度和冷却速度对硅偏析都有影响,其中浇注温度是影响最显著的因素. 随着浇注温度的升高,铝合金中Si偏析程度减小. 挤压压力和挤压速度对硅偏析的影响次之,但两者的影响趋势相反;模具冷却能力的影响程度与挤压压力和挤压速度的交互作用的影响程度相似,铜模套(高冷速)比钢模套(低冷速)的硅偏析程度要轻. 间接挤压铸造条件下,工件热节位置可以出现硅的负偏析.  相似文献   

18.
The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures. The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable. With the increase of Mg content in the Al alloys from 0wt% to 8wt%, the infiltration will become much easier, the incubation period becomes shorter and the infiltration rate is faster, but these effects are not obvious when the Mg content is higher than 8wt%. As for Si addition to the Al alloys, it has no obvious effect on the incubation period, but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%. The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.  相似文献   

19.
Under the conventional solidification condition, a liquid aluminium alloy can be hardly undercooled because of oxidation. In this work, rapid solidification of an undercooled liquid Al80.4Cu13.6Si6 ternary eutectic alloy was realized by the glass fluxing method combined with recycled superheating. The relationship between superheating and undercooling was investigated at a certain cooling rate of the alloy melt. The maximum undercooling is 147 K (0.18T E). The undercooled ternary eutectic is composed of α(Al) solid solution, (Si) semiconductor and θ(CuAl2) intermetallic compound. In the (Al+Si+θ) ternary eutectic, (Si) faceted phase grows independently, while (Al) and θ non-faceted phases grow cooperatively in the lamellar mode. When undercooling is small, only (Al) solid solution forms as the leading phase. Once undercooling exceeds 73 K, (Si) phase nucleates firstly and grows as the primary phase. The alloy microstructure consists of primary (Al) dendrite, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic at small undercooling, while at large undercooling primary (Si) block, (Al+θ) pseudobinary eutectic and (Al+Si+θ) ternary eutectic coexist. As undercooling increases, the volume fraction of primary (Al) dendrite decreases and that of primary (Si) block increases. Supported by the National Natural Science Foundation of China (Grant Nos. 50121101, 50395105) and the Doctorate Foundation of Northwestern Polytechnical University (Grant No. CX200419)  相似文献   

20.
The effects of high pressure rheo-squeeze casting (HPRC) on the Fe-rich phases (FRPs) and mechanical properties of Al-17Si-(1,1.5)Fe alloys were investigated. The alloy melts were first treated by ultrasonic vibration (UV) and then formed by high-pressure squeeze casting (HPSC). The FRPs in the as-cast HPSC Al-17Si-1Fe alloys only contained a long, needle-shaped β-Al5FeSi phase at 0 MPa. In addition to the β-Al5FeSi phase, the HPSC Al-17Si-1.5Fe alloy also contained the plate-shaped δ-Al4FeSi2 phase. A fine, block-shaped δ-Al4FeSi2 phase was formed in the Al-17Si-1Fe alloy treated by UV. The size of FRPs decreased with increasing pressure. After UV treatment, solidification under pressure led to further refinement of the FRPs. Considering alloy samples of the same composition, the ultimate tensile strength (UTS) of the HPRC samples was higher than that of the HPSC samples, and the UTS increased with increasing pressure. The UTS of the Al-17Si-1Fe alloy formed by HPSC exceeded that of the Al-17Si-1.5Fe alloy formed in the same manner under the same pressure. Conversely, the UTS of the Al-17Si-1Fe alloy formed by HPRC decreased to a value lower than that of the Al-17Si-1.5Fe alloy formed in the same manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号