首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用CHEMKIN PRO软件分别探究了在标准大气压、393 K条件下, N_2、CO_2和H_2O三种稀释成分对天然气层流燃烧速度的影响规律,并进行了化学动力学分析.结果表明,天然气的层流燃烧速度随稀释气掺混量的增大逐渐降低,其中CO_2对层流燃烧速度的影响最为显著.自由基OH、H和O的浓度随稀释气掺混量的增大而逐渐减小,并且,天然气层流燃烧速度与OH和H的浓度之和密切相关.此外,通过设计几种虚拟成分分离了稀释气对天然气层流燃烧速度影响的物理效应(包括稀释效应与吸热效应)与化学效应,结果显示,稀释气体主要通过吸热效应对天然气的层流燃烧速度产生影响.在不考虑NO_x生成情况下,N_2影响天然气层流燃烧速度的主要方式是稀释与吸热;CO_2的化学效应随着稀释比增大逐渐减小,稀释与吸热效应则有所增强;不同稀释比下,H_2O的三种效应贡献率基本不变.  相似文献   

2.
针对高甲烷含量天然气在实际发动机中燃烧温度过高、NOx排放过高的问题,利用定容燃烧弹实验和Chemkin软件模拟计算相结合的方法,对其预混层流燃烧特性进行研究,分析了不同稀释比和稀释气种类(N2和CO2)对混合气的层流火焰速度、NOx摩尔分数、燃烧压力和燃烧期等燃烧特性参数的影响。研究表明,层流火焰速度、质量燃烧率和热释放率均随稀释比的增加而减小,稀释气添加导致火焰温度下降,从而降低了NOx摩尔分数。Markstein长度和火焰厚度都随稀释比的增加而增加,火焰流动不稳定性得到抑制。添加稀释气导致燃烧压力峰值和压力升高率降低、燃烧期延长,与N2相比,CO2对混合气燃烧特性的稀释效果更加显著,从而为通过废气再循环技术路径降低高甲烷含量天然气发动机燃烧温度,控制NOx排放提供了理论指导。  相似文献   

3.
为了研究初始参数对不同掺氢比CH_4-H_2混合燃料的均质压燃(HCCI)燃烧性能的影响,采用燃烧软件包Chemkin进行了数值模拟,并利用生成速率(ROP)分析法研究了掺氢比和过量空气系数对NO排放主导机理的影响.研究表明,掺氢比、压缩比、进气温度、空气过量系数通过影响发动机内的温度继而影响NO_x排放;高掺氢比时可以通过适当降低压缩比和进气温度并增大空气过量系数从而控制NO_x的排放.分析表明,掺氢比增大,热力型机理贡献率随之增大,占主导地位;过量空气系数增大,热力型机理贡献率减弱,N_2O中间体机理贡献率增大,过量空气系数为2.5时,两种机理的主导地位大致相当.  相似文献   

4.
利用紫外成像系统获得了CH_4/O_2同轴射流扩散火焰的OH*二维辐射分布,并对其进行了Abel逆变换处理。基于OH~*分布特性的变化,重点探究了氧化剂中N_2和CO_2体积分数对火焰反应区和结构特性的影响,并进一步比较了两种稀释火焰反应区和结构特性的区别。结果表明:随稀释剂体积分数增加,火焰更加细长。在稀释剂体积分数相同的条件下,CO2稀释时火焰具有更为狭窄的火焰锋面,且OH*辐射强度显著低于N_2稀释火焰。稀释剂体积分数的增加使OH~*的生成机理发生改变,从而导致火焰的核心反应区发生位移。火焰反应区的轴向高度随稀释剂体积分数的增加呈先增大后减小的变化趋势。与N_2稀释火焰相比,反应机理转变对CO_2稀释火焰反应区轴向高度的影响更大。  相似文献   

5.
为深入研究氢燃料内燃机NO_x的生成机理,基于CONVERGE软件建立了三维网格耦合详细化学反应机理的氢燃料内燃机CFD仿真模型,进行了氢燃料内燃机在不同负荷下的燃烧及排放特性研究。模型的仿真结果和试验数据较为吻合。结果表明,氢气浓度增大有利于提高氢燃料内燃机的效率;NO的大量生成出现在不断升温的快速燃烧期,快速燃烧结束后NO总量不断减少,其缸内平均温度低于2 200K时NO总量趋于稳定;热NO,NNH和N_2O是NO生成最主要的路径,其中热NO路径产生的NO排放最多,其贡献率随着负荷增大而增大。NNH和N_2O路径在较低浓度时有接近25%的贡献率,而在燃空当量比为1.0时,这2种路径对NO生成的贡献率之和为负值。采用化学反应动力学方法得到了3种路径在不同负荷下对NO生成的贡献率,初步揭示了氢燃料内燃机NO_x生成的机理,为后续研究提供了理论参考。  相似文献   

6.
为研究煤加压富氧燃烧及其污染物生成特性,建立了加压水平管式炉富氧燃烧实验系统.以山西浑源烟煤为实验原料,探究了不同燃烧压力(0.1~0.9 MPa)和不同气氛(空气以及O_2浓度分别为21%,26%,31%,36%,41%的O_2/CO_2气氛)对煤加压富氧燃烧过程的燃烧特性以及污染物生成的影响.结果显示,与空气燃烧相比,O_2/CO_2气氛下煤燃烧时间增加;随着O_2浓度的增加,煤燃烧时间缩短;升高反应压力,煤燃烧速率增大且增幅逐渐减小;随着反应压力的提高NO_x生成量逐渐减少,O_2/CO_2气氛下NO_x生成量小于空气气氛下NO_x生成量,随着O_2浓度增加,NO_x生成量增加;压力升高导致SO_2生成量明显减少,O_2/CO_2气氛下SO_2生成量小于空气气氛下SO_2生成量,SO_2生成量随着O_2浓度增加而增多.  相似文献   

7.
为研究基于废气重整再循环(REGR)技术的天然气发动机燃烧排放调控机制,开展了富氢重整气添加对点燃式天然气发动机缸内燃烧过程影响的数值模拟研究。结果表明,添加富氢重整气与增大过量空气系数对天然气发动机的燃烧过程的影响规律相反。增大重整气添加率可使燃料着火时刻提前1.42°,燃烧持续期缩短;增大过量空气系数则会使缸内平均压力峰值和放热率峰值降低,着火时刻滞后2.24°。REGR率增加到16%时可使总碳氢化合物排放降低26.98%,NO_x排放降低62.52%,但会导致发动机功率降低9.52%。基于此,从化学动力学角度进一步解析REGR率对天然气发动机缸内燃料燃烧反应过程与污染物生成演化过程的影响。结果表明,随REGR率增大,OH自由基参与CH_4消耗反应占比增大,从而加快基元反应速率,使燃烧相位提前,并使未燃HC排放降低。  相似文献   

8.
层流火焰传播速度(LFPS)是研究分析燃烧与爆炸的关键特征参数,层流火焰速度下降率也是评价各种稀释剂对燃烧抑制效果的常用方法。基于CHEMKIN 17.0中的一维层流预混火焰速度计算模型,定量分析了稀释、潜热冷却、化学抑制对CH4-AIR层流火焰传播速度的影响规律;并考虑了化学当量比变化的影响。研究表明稀释和潜热冷都是降低CH4层流火焰传播速度的主要因素。随着稀释剂浓度的增加,稀释作用对火焰传播速度的影响增大,潜热冷却作用对火焰传播速度的影响减小,化学抑制作用的影响基本不变化,范围在8.8%~10.2%。化学当量比小于1.2时,化学抑制作用会降低火焰传播速度,降低比例在8.1%~9.7%之间;当化学当量比大于1.3时,化学抑制不起作用,甚至促使火焰传播速度的增大。  相似文献   

9.
基于GRI-Mech 3.0详细化学反应机理,利用预混燃烧模型(PREMIX Code)研究了甲烷-空气-稀释气层流预混火焰燃烧特性及火焰结构.重点探讨了不同化学当量比(0.5~1.5)、初始压力(0.05~0.40 MPa)、稀释气体种类(N2,CO2及H2O)和稀释摩尔比(0~0.35)对甲烷-空气-稀释气混合气层...  相似文献   

10.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响.  相似文献   

11.
文章采用化学动力学模型模拟了甲烷对冲火焰中掺CO对碳烟生成的影响,在数值模拟中引入假想一氧化碳(fiction CO,FCO)得到了将稀释效应区分后CO的化学效应。计算结果表明:在甲烷燃料中掺CO和FCO都会由于稀释效应导致碳烟生成量单调减少。但是,与掺FCO的工况对比发现,CO对碳烟生成的化学效应通过抑制反应C_2H_2+O=CH_2+CO正向发生减少C_2H_2的消耗,进而促进碳烟表面质量生长,最终促进碳烟生成。在氧化剂中掺CO会导致碳烟生成量出现先增加后减少的非单调变化。掺少量CO会促进反应CO+OH=CO_2+H正向进行增加H摩尔分数,进而促进燃料裂解最终促进碳烟生成;但是掺过量CO时,CO很快就会在氧化剂端喷嘴处反应,反而会使碳烟区域的H摩尔分数降低,从而降低碳烟表面生长速率。此外,CO会生成大量CO_2抑制碳烟生成。  相似文献   

12.
本文根据NO_x生成的机理,从快速着火、高温燃烧、控制火焰结构等几个方面阐述了国内电厂大容量煤粉锅炉降低NO_x的有效措施;同时定量分析了几种因素对NO_x排放的影响。  相似文献   

13.
O2/CO2气氛下煤粉燃烧热重分析及动力学特性   总被引:1,自引:0,他引:1  
在综合热分析仪上进行了3种煤粉在O_2/N_2及O_2/CO_2气氛下的非等温燃烧试验,研究了不同气氛下煤粉燃烧特性参数的变化,并计算出各工况下的动力学参数.结果表明:在相同O_2浓度下,煤粉在O_2/N_2和O_2/CO_2气氛下燃烧特性有所不同,用CO_2代替N_2后煤粉着火温度和燃尽温度均升高,燃烧时间延长,综合燃烧特性指数下降;O_2/CO_2气氛下,增加O_2浓度后,燃烧热重曲线向低温区域移动,着火提前,燃尽温度降低,燃烧时间缩短,综合燃烧指数明显提高,燃烧性能得到改善;煤粉燃烧反应低温段的活化能和频率因子较高温段低,反应级数较小;不同工况下,煤粉2个阶段的反应活化能和频率因子之间存在动力学补偿效应.  相似文献   

14.
以低热值气体燃料的燃烧利用为背景,以N_2或CO_2稀释的甲烷或丙烷及内径2mm或3mm的喷管作为多重变量,实验研究了射流扩散火焰的抬举速度及吹熄速度随燃料稀释比的变化规律.结果发现,随着稀释比的增大,火焰抬举速度近似呈线性缓慢减小,吹熄速度近似呈指数快速衰减.分析表明,这主要归因于稀释导致了当量混合层流火焰速度、初始燃料质量分数及燃烧放热的减小,并对低热值气体燃料的燃烧器设计提出了建议.此外,大于临界稀释比时,附着火焰随射流速度的增大不能转变为稳定的抬举火焰而会发生直接吹熄,依据甲烷和丙烷临界稀释比对应的射流雷诺数推测出二者的临界稀释比可能受不同机理的控制.  相似文献   

15.
借助耦合CH4反应动力学模型与计算流体力学(Computational Fluid Dynamics,CFD)计算软件,对某重型燃气轮机燃烧室单个火焰筒的燃烧过程进行了研究,分析了导致NO_x排放超标的原因,调整了不同燃烧区的燃料分配,分析了燃料分配对NO_x排放的影响.结果表明,导致NO_x排放超标的原因为环形区、均匀区燃料/空气混合的不均匀性和值班区、均匀区燃料流量过大导致的局部温度过高;将值班区燃料和均匀区燃料的体积流量比例分别调整为4%和30%,会导致主燃烧区温度升高,NO_x排放由标准状态141.7mg/m~3升高至175.5mg/m~3;将值班区燃料和均匀区燃料比例分别调整为2%和26%,会降低主燃烧区温度,使NO_x排放降低至119.5mg/m~3,其中66.3mg/m~3来自于环形区.单纯地进行燃料调节,不能满足NO_x排放要求,还需要对环形区和均匀区结构进行调整,以增加混合的均匀性.  相似文献   

16.
利用容弹球形火焰法测量了常温、常压下不同稀释系数、不同当量比时二甲醚-空气-N2/CO2混合气的层流燃烧特性.研究结果表明:拉伸火焰传播速度、无拉伸火焰传播速度、无拉伸层流燃烧速率均随稀释系数的增大而减小.Markstein长度值随稀释系数的增大而增大,二甲醚-空气混合气中加入稀释气后提高了火焰前锋面的稳定性.二甲醚-空气混合气进行少量稀释后即可提高火焰的稳定性,继续增大稀释系数对提高火焰稳定性的作用不明显.无拉伸层流燃烧速率最大值随着稀释系数的增加向浓混合气方向偏移.随着稀释系数的增大,二甲醚-空气-稀释气混合气的稀燃极限向浓混合气一侧移动,浓燃极限向稀混合气一侧移动,可燃范围变窄.CO2作为稀释气对火焰传播速率和可燃区域的影响大于N2作为稀释气对火焰传播速度和可燃区域的影响。  相似文献   

17.
针对稀释气体影响离子电流前锋区特征峰的研究比较缺乏,以甲烷/空气/稀释气体为对象,通过在定容燃烧弹内布置离子电流测量电极,获得了稀释气种类N2/CO2/Ar和0%、5%、10%、15%几种不同稀释比条件下离子电流的特征峰值,结合CHEMKIN化学反应动力学数值模拟结果,分析了主导离子电流前锋区信号生成的带电组分的数密度、敏感性系数及其生成路径。试验结果表明:相同的稀释比下,CO2稀释对离子电流信号的抑制作用最大;在不同的稀释气体种类下,离子电流前锋区峰值均在过量空气系数λ为0.95时达到最大。数值计算结果表明,对离子电流前锋区信号贡献最大的组分是H3O+和电子e,链分支反应R38、链终止反应R52和离子化初始反应R326对这两种组分浓度的影响较大。在过量空气系数λ为0.95时,O和CH数密度都较大且反应区温度最高,导致化学离子化程度最大,离子电流值前锋区峰值也达到最大值。该结论为研究稀释气体对燃料燃烧的离子电流信号影响和火焰锋面电学特性提供了一定的机理支撑。  相似文献   

18.
利用OH-PLIF方法获得了当量比分别为0.6、0.8、1.0、1.2,CO2或N2稀释比分别为3%、5%时,合成气/空气/稀释气本生灯预混层流火焰中OH基的分布,结合STAR-CD模拟计算所得火焰中的流场和组分分布进一步分析了火焰结构。研究结果表明:随着混合气当量比的增加,OH基高浓度分布区域由火焰前锋面附近转移到火焰边缘;混合气较稀时,火焰前锋面附近OH基浓度最高且沿已燃区方向逐步递减,火焰顶端处OH基浓度减小,模拟计算结果显示火焰顶端并未发生燃料泄漏;化学当量比下,火焰前锋面附近和火焰边缘区域OH基浓度较高,火焰前锋面附近出现了预混燃烧区和扩散燃烧区,该区域中OH基呈现"W"型分布;受N2和CO2稀释的影响,混合气层流燃烧速度降低,火焰前锋面拉长,CO2对火焰结构的影响比N2更显著;火焰前锋面附近OH基浓度减小,扩散燃烧区OH基浓度增大,说明火焰的预混燃烧有所减弱,扩散燃烧有所加强。  相似文献   

19.
选用Davis-机理模拟研究初始温度400 K时,含有水蒸气的合成气/空气预混层流火焰传播特性.结合敏感性分析,从热力学效应、直接化学反应效应及化学三体反应效应方面详细分析水蒸气稀释作用.研究结果表明:当燃料中氢气的体积分数大于25%时,层流火焰传播速度、绝热火焰温度及重要自由基摩尔分数均随稀释剂比例的增加显著降低;在水蒸气整体稀释作用中,热力学效应起支配作用;随氢气体积分数的增加,当混合物当量比较小时,直接化学反应效应影响从促进作用发展为抑制作用;当稀释剂较少时,化学三体反应效应影响存在显著的抑制—促进—抑制作用的变化过程.  相似文献   

20.
王虚实  车辉 《安徽科技》1999,(10):35-35
1.污染物及对人体的危害 1.1 化学污染物 (1)CO、CO_2、SO_2、NO_x CO主要来源于燃料的不完全燃烧,尤其在开炉、封炉及炉火不旺时CO排放量最大。液化气开启越小,燃烧越不完全,CO排放量最大,排放系数高达3.88mg/L,而燃烧完全时,则仅为0.59mg/L。另外,煤炉旺火、煤气大火时,SO_2和NO_x的排出量较大。使用煤时CO、SO_2排出较多,使用液化气时NO_x、CO_2排出较多。在扩散程度上NO_x最快,SO_2次之,CO最慢,所以在门窗紧闭的情况下,CO易于成为室内的主要污染物。对人体的危害表现为:CO、CO_2低浓度长时间接  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号