首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以某光纤企业汇流排丙烷气体瞬时泄漏为例,对重气云扩散模式及其影响因素进行研究,选用盒子模型进行扩散模拟,求得浓度随扩散时间、泄漏点距离的变化规律、产生健康危害的下风向距离以及造成的危害区范围.经计算可知,距泄漏点下风向33.11m即可达到爆炸浓度下限,丙烷云团瞬时泄露扩散45s后能造成409.23m的人员健康危害区.经过分析,企业汇流排实际布局不能满足气体泄漏事故发生时的安全要求.此结果可为发生事故时作业人员确定事故毒害危险区及疏散范围提供合理性依据.  相似文献   

2.
氯乙烯意外泄漏扩散时,很容易造成人员伤亡和环境破坏。采用Fluent仿真软件对氯乙烯气体泄漏及其外流场进行数值模拟,分析环境风速对气体泄漏扩散的影响。研究发现:在无风条件下,氯乙烯气体泄漏后堆积在近地面,扩散缓慢,泄漏云团整体呈现圆形;当环境风速为2m/s时,氯乙烯气体在环境风、重力和初速度共同影响下,近地面形成了气体云团后,气云逐渐往下风向移动。云团扩大的同时,浓度不断稀释,云团整体呈现椭圆形。  相似文献   

3.
针对液氢生产、储存、运输过程中发生瞬时大流量泄漏的问题,对美国国家航空航天局进行的液氢泄放实验进行了数值模拟。采用非均相的混合模型,考虑气液相间速度滑移,对氢气、空气云团内部浓度、温度、密度等物理量的动态变化规律,以及可燃云团在竖直方向的扩散范围进行研究,揭示了可燃云团在开放空间的动态扩散行为,其扩散行为分为重气扩散、浮升扩散和被动扩散3个阶段。浮升扩散阶段为可燃云团扩散的最主要阶段,发生在停止泄放后大约8s的很短时间内,氢气浓度急剧下降,云团快速脱离地表并升高至约30m,在被动扩散阶段可燃云团扩散最慢,却占据大部分时间,即大约60s的时间,此阶段可燃云团维持在约40m的高空并且随风飘移。在风速较低的工况下,温差导致的低温氢气与空气的局部湍流相混合,是可燃云团扩散的主要动力。  相似文献   

4.
为研究底板排气、通风及挡烟垂壁对狭长密闭空间高硫天然气泄漏控制效果,利用ANSYS Fluent 19.2软件模拟多种工况下硫化氢摩尔含量为5%的高硫天然气持续泄漏60 s后硫化氢及甲烷分布特征。分析底板排气速度、通风风速及挡烟垂壁下垂高度对泄漏高硫天然气分布影响规律。结果表明:增设挡烟垂壁使泄漏高硫天然气形成涡流,挡烟垂壁下垂高度应设置为0.5 m;当底板排气速度为4.0 m/s,采用0.63 m/s通风能将泄漏高硫天然气限制在泄漏口所在挡烟垂壁区间,为最优组合;通风及底板排气系统能在高硫天然气云团表面形成空气膜,可防止高硫天然气大范围扩散。  相似文献   

5.
液化天然气(LNG)点供站因其便利性和经济性已成为城镇和工业补充气源的优先选择,但由此带来的安全隐患和突发事故也引起关注和重视。为研究LNG点供站管线3种泄漏方向下天然气浓度分布、爆炸超压和温度变化规律,基于计算流体动力学方法,使用FLACS软件建立三维模型并进行数值模拟。结果表明:水平泄漏和向上45°泄漏条件下,泄漏气体云团影响范围达到稳定的时间分别为120和30 s,垂直泄漏气云达到稳定时间最短仅需5 s。水平泄漏场景下,泄漏气体可扩散至气化器以及储罐周围,其影响范围大于向上45°泄漏和垂直泄漏。向上45°泄漏爆炸产生的最大超压高于其他两个场景下的最大超压,且影响范围最大。水平和向上45°泄漏时,高温区域主要集中在气化器的底部和左侧,2种场景燃烧产生高温对气化器的安全运行具有较大的安全隐患,而垂直泄漏高温区域主要分布在泄漏口上方,对设备造成的影响最小。  相似文献   

6.
基于Fick扩散方程,建立了煤气储罐瞬间完全泄漏的无风情况下的动态扩散模型.根据气体储罐形状为圆柱,确定了介质瞬间完全泄漏后模型的初始条件和边界条件,然后通过坐标变换和傅立叶变换和适用于圆柱(Bessel)函数的Hankel变换,求出了此条件下扩散方程的解析解.根据风力对扩散过程的影响,在无风扩散方程的基础上建立了有风条件下的扩散模型并求取了解析解,然后以一50000m3(r=19m,h=40m)煤气储罐完全破裂后的气体扩散过程为例进行了模拟,模拟结果验证了模型的有效性.  相似文献   

7.
天然气储罐一旦发生泄漏后,会对人体及周围造成损害,以西安天然气厂作为对象,针对泄漏扩散、火灾爆炸主要的事故类型等,从分析影响天然气泄漏的因素出发,通过高斯烟羽模型和TNT当量法,计算天然气储罐一旦发生泄漏,产生的危害范围。研究认为参照天然气爆炸上下限以及人可接触浓度阈值三个值为分界点,距离泄漏源下风向313 m,甲烷浓度达到了对人体有害的阈值,距离泄漏源下风向135 m处,天然气浓度处于爆炸下限,以爆炸源为中心,距其440 m以内的范围属于死亡区。高斯烟雨模型极大程度的考虑了影响扩散的因素,TNT当量法是计算爆炸能量的通用方法,得到的计算具有很高的合理度,可作为气体泄漏扩散危害的计算工具。  相似文献   

8.
液体推进剂属于危险化学品,一旦发生泄漏,会引起火灾、爆炸、人员中毒和环境污染。因此,有效地控制推进剂泄漏,对于减缓危害十分重要。该文分析了液体推进剂的泄漏扩散过程,建立了推进剂管道或贮罐孔洞突发泄漏时污染物时空分布模型,采用大气Gauss扩散模型计算了发生泄漏扩散时的安全距离和人员疏散范围。结果表明:当推进剂泄漏到直径为5 m的液池中且连续扩散时:偏二甲肼的安全疏散距离为1 200 m;四氧化二氮的安全疏散距离为600 m。该模型可用于推进剂泄漏时的应急处置和风险管理。  相似文献   

9.
厂区天然气泄漏扩散的数值模拟研究   总被引:1,自引:0,他引:1  
根据危险性气体空间泄漏扩散的特点,对厂区天然气等危险性轻质气体泄漏扩散运动进行了数值模拟,着重研究了大气风向风速、泄漏射流方向和泄漏时间对危险性轻质气体(天然气)空间泄漏扩散浓度场和危险性区域的影响.其中大气主导风的风速对气体扩散浓度和扩散危险性区域有很大的影响,如等值线图模拟的条件下,在x方向上,风速v=0.5 m.s-1比v=5.0 m.s-1条件下危险性区域大155 m.  相似文献   

10.
关于大气污染物泄露扩散的模型有很多,目前常用的是《建设项目环境风险评价技术导则》中推荐的高斯模型。为了解决高斯多烟团模式快速计算的问题,在对该模式深入研究的基础上,提出了利用Excel强大的数据处理功能对突发性大气污染物泄露扩散进行模拟。以某肉食加工厂为研究载体,氨气作为虚拟突发环境事故模拟对象,预测一定条件下氨气泄漏所达到最大落地浓度、下风向最大落地浓度距离及短时间容许接触浓度限值的范围,并预测了风速对氨气扩散的影响。为其周边环境以及居民安全撤离提供科学依据,对突发性污染气体泄漏事件的应急方案的制定与实施具有一定的现实指导意义。  相似文献   

11.
为了研究天然气输送管道发生泄漏后气体的扩散规律,以长庆油田第五采气厂输送管道为研究对象,利用FLUENT软件进行数值计算。根据现场的实际情况,建立了数值模拟的物理模型,设置合理的边界条件,得到了不同风速下天然气扩散规律。结果表明:在静风条件下,气体的浓度和速度分布基本上呈对称分布。在风力的作用下,气体的浓度场向下风向发生了明显的偏斜,当风速为3 m/s时,喷射气流大约在泄漏口上方50 m处发生偏斜,当风速为5 m/s时,喷射气流大约在泄漏口上方35 m处发生偏斜,当风速为10 m/s时,喷射气流大约在泄漏口上方15 m处发生偏斜,而且随着风速的增大,射流偏离竖直方向角度也增大。同时风速越大,硫化氢对人体有危害的面积越小。  相似文献   

12.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:12,自引:2,他引:10  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

13.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:3,自引:0,他引:3  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

14.
氨气通常采用常温高压或低温加压的方式液化储存,而液氨具有特殊毒性和影响,为了了解液氨泄漏扩散时的范围和影响,通过某案例的背景资料利用高斯烟羽模型对液氨连续泄漏源进行建模,利用MATLAB软件对模型进行模拟,定量分析液氨泄漏扩散全过程.经计算可得,对于假定发生的泄漏事故,重伤半径为53m,刺激半径为200m,以车间最高允许浓度(MAC)为毒性终点,该液氨泄漏事故的影响距离为278m,这对制定及时有效的防灾对策,减少人员伤亡和降低环境污染危害具有重要的现实意义.  相似文献   

15.
本文基于Fluent软件对于氨气储罐的泄漏进行模拟,研究在不同风速、不同风向以及设置障碍物下对氨气扩散的影响.研究表明,氨气在自然扩散时呈蒲扇形沿着风向扩散;风速越大氨气在水平风速方向上扩散距离越远,污染范围也越大;风向与氨气泄漏口位置水平垂直时,氨气首先垂直于风向扩散一定距离,然后再沿水平风向扩散;障碍物对氨气的扩散速度和范围具有阻碍作用.  相似文献   

16.
简述重气云团及其扩散的相关理论,运用SLAB模型模拟某厂液氯钢瓶破裂瞬时泄漏后下风向浓度三维分布情况。得到近地处氯气泄漏扩散浓度分布曲线、敏感点浓度随时间变化曲线、浓度分布三维曲面。结果表明:厂内大部分浓度在300 mg/m3以上,位于致死区域;下风向1 500 m处敏感点暴露在50 ~ 60 mg/m3浓度区间内的时间约为60 s;三维浓度曲面呈狭长的椭圆拱形,氯气浓度58 mg/m3的曲面高度可达43 m。以上结果可为事故应急救援提供有效参考。  相似文献   

17.
 为确定含二氧化碳天然气云团扩散的危险区域范围,借助数值模拟方法建立了含二氧化碳天然气云团扩散模型,详细研究了含二氧化碳天然气云团扩散过程,确定了包括窒息和燃爆在内的2种危险区域。研究结果表明,含二氧化碳天然气云团扩散中燃爆区域呈不规则圆环状分布,燃爆区域的横风向尺度变化不大,而平行于风向的方向变化较大。无论横风向还是顺风向,燃爆区域尺度随时间的变化都呈开口朝下的抛物线形分布。高含二氧化碳天然气云团扩散后形成的燃爆区域无论从时间还是空间尺度看,波及的范围都远小于窒息性危险区域。  相似文献   

18.
比较目前应用较多的泄漏扩散模型的适用性,采用平板模型对丙烷气体连续泄漏进行模拟计算,求得平均风速条件下,泄漏源下风向52.35m的扩散区域内,丙烷气体将对车间人员产生不同程度的健康危害;静风条件下,泄漏源下风向约11.98m的区域内,丙烷气体达到爆炸浓度下限,若有火源易发生气团爆炸.分析结果可为使用丙烷气体的企业预测丙烷泄漏后对不同范围内的人员造成的危害程度提供参考.  相似文献   

19.
为了保障化工区的生产安全以及员工的生命财产安全,利用挪威船级社的PHAST软件,建立数学物理模型,通过设定不同的事故情境、气候条件、泄漏管道的直径、泄漏时间、地面粗糙程度等因素对化工园区液氨泄漏后果进行模拟分析,获得液氨泄漏后园区气体扩散中毒与死亡情况、喷射火影响范围、早起爆炸影响等模拟结果。该分析结果将直观地展示液氨泄漏后的影响范围、危险程度,可为企业事故现场员工自救,为企业进行事故控制、采取安全措施提供帮助。  相似文献   

20.
10 000 m3的立式内浮顶储罐在成品油站场中数量最多,为研究汽油泄漏扩散行为,考虑相邻罐之间的影响,通过FLACS软件,按照标准建立罐区三维模型,基于pool模块,分别讨论液池和可燃气云在不同泄漏速率、温度、风速影响下的扩散行为。研究结果表明,双罐区的液池和气云扩散主要受相邻储罐的阻挡而绕流扩散,随后与单罐区一样,受到防火堤的约束;根据在30 s形成的液池面积大小及可燃气体扩散最远距离来评价汽油泄漏后的灾害严重程度,发现泄漏速率越大、风速较小且稳定时,液池及可燃气云扩散速度越快,危险程度越高,而温度对液池扩展及气云扩散影响较小;结合监测点的实时气体浓度信息及GB 50493——2019相关规定,建议罐区可燃气体探测器设置在泄漏源附近,高度设置为0.3 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号