首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
本文分别以廉价的硫酸铝铵和碳酸氢铵为主要原料,采用AACH法制备出Al(OH)3沉淀,经1200℃、2小时煅烧后,得到了平均粒径为70~100nm的α-Al2O3纳米粉末。讨论了不同工艺参数对所获得纳米粉体颗粒形状、颗粒分布、团聚情况以及晶相构成等的影响规律。实验结果表明,在1200℃进行煅烧处理,则可获得纯的刚玉型氧化铝;同时分析讨论了不同工艺对α-Al2O3粉的粒度、分散特性等方面的影响。不同的滴定方式对α-Al2O3的粒度和团聚程度有重要影响,而对粉末的晶粒形状没有明显的影响。  相似文献   

2.
液相法纳米氧化铝粉的制备   总被引:4,自引:0,他引:4  
以廉价的无水氯化铝为主要原料,采用液相法制备出Al(OH)3沉淀,经1200℃2h煅烧,得到了平均粒径为30nm~80nm的α-Al2O3,超细粉末,并对不同工艺方法对纳米氧化铝粉的粒度、分散特性及物相构成等方面的影响进行了分析和讨论。实验结果表明,不同的滴定方式对α-Al2O3,粉的颗粒大小、颗粒形态和团聚程度有重要影响,较高的煅烧温度可获得纯的α-Al2O3,纳米粉末。  相似文献   

3.
等离子喷涂氧化铝陶瓷涂层组织   总被引:3,自引:0,他引:3  
用X射线衍射、扫描电镜和显微硬度计研究了45钢表面等离子喷涂Al2O3陶瓷涂层的微观组织结构、显微硬度,同时对涂层的界面结合特性进行了考察。结果表明,喷涂前的α-Al2O3相粉末,经喷涂后,存在α-Al2O3相向γ-Al2O3相的转变,且以γ-Al2O3相为主相。在金属基体与陶瓷层之间加入NiCrAl层后热膨胀系数不匹配性得到一定程度的改善,从而使涂层内应力降低,结合强度得以提高。  相似文献   

4.
在水/辛烷基苯酚聚氧乙烯醚(Triton X-100)/正丁醇/环己烷组成的微乳液体系中,制备并表征了氧化铝-氧化锆纳米复合颗粒.用动态光散射法研究了温度、水与表面活性剂的物质的量比、反应物的浓度等反应条件对Al(OH)3-Zr(OH)4颗粒平均粒径以及粒度分布的影响.分别用透射电镜、X射线衍射、红外以及热分析表征60℃真空干燥和500,1200℃热处理后的粉末,表明60℃真空干燥后,粉末以无定形为主;500℃时粉末粒径为5 nm左右,主要是t-ZrO2,Al2O3以固熔体形式存在;1200℃时粉末粒径为200 nm左右,是t-ZrO2,m-ZrO2,α-Al2O3共存.  相似文献   

5.
采用高能球磨粉末冶金法制备颗粒增强Al基复合材料,分别以ZrO2,SiC和α-Al2O3为增强体,对比分析了不同颗粒增强Al基复合材料的组织与性能.以α-Al2O3颗粒为主增强体,分析了不同粒度α-Al2O3对复合材料组织性能的影响.研究结果表明,ZrO2/Al和 SiC/Al 复合材料的界面结合不如α-Al2O3/Al复合材料的界面结合紧密,α-Al2O3颗粒粒径为45μm时,复合材料性能更好地得到改善,添加适量的Ce能改善基体与增强体的界面结合,并显著地提高了颗粒增强Al基复合材料的性能.  相似文献   

6.
采用热压注法制备多孔氧化铝基陶瓷型芯,研究了Al_2O_3粉粉末粒度分布、Al粉加入量和保温时间对陶瓷型芯性能的影响.研究结果表明:Al_2O_3粉粉末粒度分布显著影响陶瓷型芯的性能,当加入的Al_2O_3粉粉末粒径分别为80,58和45μm,且三种Al_2O_3粉粉末的质量比为1∶1∶1时,制备的陶瓷型芯性能较好;当Al粉加入量(质量分数)为10%时,型芯的综合性能最好,其线性收缩率为-0.85%,抗弯强度为30.43 MPa,气孔率为46.99%,且保温时间对样品的性能影响很小,在1 500℃下保温5h,样品性能稳定,该型芯有望满足陶瓷型芯的铸造要求.  相似文献   

7.
通过X-射线衍射、扫描电镜及透射电镜,研究了结合微波-超声的溶胶-凝胶法制备α-Al2O3纳米粉体,并探讨了该制备条件下α-Al2O3晶种的引入对产物相变的影响.结果表明:该法能制备出外观呈球形、粒径分布比较均匀、粒径约15 nm的α-Al2O3,且实验快速、简便;而引入α-Al2O3晶种,能促进θ-Al2O3向α-Al2O3转变,并能有效降低产物相变温度,当引入量为2%时,1 000℃煅烧并恒温2 h的产物全部为α-Al2O3.  相似文献   

8.
利用行星球磨技术制备了纳米结构CoNiCrAlY粉末,采用XRD,SEM等方法对传统结构粉末和纳米结构粉末在1 000℃时的氧化行为进行了研究.结果表明,行星球磨技术能制备出纳米结构粉末,球磨30h后,粉末的平均晶粒尺寸为11.2nm.纳米结构提高了CorANiClY粉末的抗氧化性能,在1 000℃恒温静态氧化100h的过程中,纳米结构粉末只生成α-Al2O3氧化膜,而传统结构粉末除α-Al2O3外还生成了尖晶石氧化物和少量θ-Al2O3.  相似文献   

9.
以Al2(SO4)3为铝源,(NH4)2CO3为沉淀剂,利用沉淀-共沸蒸馏法制备出前驱物碳酸铝铵(AACH),并煅烧得到超细α-Al2O3粉末.研究了加料方式、表面活性剂、干燥方式等因素对产物分散性能的影响,分析了超细氧化铝粉末在热处理过程中的结构和性能变化.采用热重/差示扫描法(DTA/TGA)、扫描电镜(SEM)、X射线衍射(XRD)以及ICP等现代分析检测技术对样品性能进行了表征.结果表明,只有将Al2(SO4)3溶液雾化加入到(NH4)2CO3溶液中,添加适量PEG1000做为分散剂,同时采用正丁醇共沸蒸馏才能制备出粒度分布均匀、分散性能优异的超细α-Al2O3粉末.煅烧过程中,氧化铝的相变过程为:Al2O3(无定型)→γ-Al2O3→θ-Al2O3→α-Al2O3,且随着煅烧温度的提高,产物的晶粒尺寸不断增大,密度不断得到提高.在优化条件下合成的前驱物AACH于1 200 ℃煅烧2 h,能得到粒度分布均匀、分散性良好、形貌为类球形且纯度为99.97%以上的α-Al2O3粉体.图9,表1,参15.  相似文献   

10.
以氧化铝、碳黑、硝酸铝、葡萄糖为原料,采用2种不同的工艺制备了氧化铝-碳黑和硝酸铝-葡萄糖2种体系的原料混合物,研究了原料的种类对氮化铝粉末合成反应的影响.研究结果表明以氧化铝和碳黑为原料时,氮化反应过程中只出现了α-Al2O3和AlN相,该原料体系反应速度较慢,在温度为1650 ℃时氮化3~5 h才能实现完全氮化;而以硝酸铝和葡萄糖为原料时,氮化反应过程中相变较复杂,出现了γ-Al2O3,α-Al2O3,AlON和AlN相,该原料体系反应速度较快,1550 ℃时仅需1~2 h便可实现完全氮化;不同的起始原料不仅可以影响反应速度,还对粉末的粒度有较大影响,以氧化铝和碳黑为原料合成的氮化铝粉末的平均粒度约为0.7 μm;而以硝酸铝和葡萄糖为原料合成的氮化铝粉末的平均粒度约为0.1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号