首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Bloch I  Hansch TW  Esslinger T 《Nature》2000,403(6766):166-170
The experimental realization of Bose-Einstein condensates of dilute gases has allowed investigations of fundamental concepts in quantum mechanics at ultra-low temperatures, such as wave-like behaviour and interference phenomena. The formation of an interference pattern depends fundamentally on the phase coherence of a system; the latter may be quantified by the spatial correlation function. Phase coherence over a long range is the essential factor underlying Bose-Einstein condensation and related macroscopic quantum phenomena, such as superconductivity and superfluidity. Here we report a direct measurement of the phase coherence properties of a weakly interacting Bose gas of rubidium atoms. Effectively, we create a double slit for magnetically trapped atoms using a radio wave field with two frequency components. The correlation function of the system is determined by evaluating the interference pattern of two matter waves originating from the spatially separated 'slit' regions of the trapped gas. Above the critical temperature for Bose-Einstein condensation, the correlation function shows a rapid gaussian decay, as expected for a thermal gas. Below the critical temperature, the correlation function has a different shape: a slow decay towards a plateau is observed, indicating the long-range phase coherence of the condensate fraction.  相似文献   

2.
Levy S  Lahoud E  Shomroni I  Steinhauer J 《Nature》2007,449(7162):579-583
The alternating- and direct-current (a.c. and d.c.) Josephson effects were first discovered in a system of two superconductors, the macroscopic wavefunctions of which are weakly coupled via a tunnelling barrier. In the a.c. Josephson effect, a constant chemical potential difference (voltage) is applied, which causes an oscillating current to flow through the barrier. Because the frequency is proportional to the chemical potential difference only, the a.c. Josephson effect serves as a voltage standard. In the d.c. Josephson effect, a small constant current is applied, resulting in a constant supercurrent flowing through the barrier. In a sense, the particles do not 'feel' the presence of the tall tunnelling barrier, and flow freely through it with no driving potential. Bose-Einstein condensates should also support Josephson effects; however, while plasma oscillations have been seen in a single Bose-Einstein condensate Josephson junction, the a.c. Josephson effect remains elusive. Here we observe the a.c. and d.c. Josephson effects in a single Bose-Einstein condensate Josephson junction. The d.c. Josephson effect has been observed previously only in superconducting systems; in our study, it is evident when we measure the chemical potential-current relation of the Bose-Einstein condensate Josephson junction. Our system constitutes a trapped-atom interferometer with continuous readout, which operates on the basis of the a.c. Josephson effect. In addition, the measured chemical potential-current relation shows that the device is suitable for use as an analogue of the superconducting quantum interference device, which would sense rotation.  相似文献   

3.
Chin JK  Miller DE  Liu Y  Stan C  Setiawan W  Sanner C  Xu K  Ketterle W 《Nature》2006,443(7114):961-964
The study of superfluid fermion pairs in a periodic potential has important ramifications for understanding superconductivity in crystalline materials. By using cold atomic gases, various models of condensed matter can be studied in a highly controllable environment. Weakly repulsive fermions in an optical lattice could undergo d-wave pairing at low temperatures, a possible mechanism for high temperature superconductivity in the copper oxides. The lattice potential could also strongly increase the critical temperature for s-wave superfluidity. Recent experimental advances in bulk atomic gases include the observation of fermion-pair condensates and high-temperature superfluidity. Experiments with fermions and bosonic bound pairs in optical lattices have been reported but have not yet addressed superfluid behaviour. Here we report the observation of distinct interference peaks when a condensate of fermionic atom pairs is released from an optical lattice, implying long-range order (a property of a superfluid). Conceptually, this means that s-wave pairing and coherence of fermion pairs have now been established in a lattice potential, in which the transport of atoms occurs by quantum mechanical tunnelling and not by simple propagation. These observations were made for interactions on both sides of a Feshbach resonance. For larger lattice depths, the coherence was lost in a reversible manner, possibly as a result of a transition from superfluid to insulator. Such strongly interacting fermions in an optical lattice can be used to study a new class of hamiltonians with interband and atom-molecule couplings.  相似文献   

4.
Regal CA  Ticknor C  Bohn JL  Jin DS 《Nature》2003,424(6944):47-50
Following the realization of Bose-Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation or a magnetic field Feshbach resonance. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system. Such a coupling would be closely related to the pairing mechanism in a fermionic superfluid, predicted to occur near a Feshbach resonance. Here we report the creation and quantitative characterization of ultracold 40K2 molecules. Starting with a quantum degenerate Fermi gas of atoms at a temperature of less than 150 nK, we scan the system over a Feshbach resonance to create adiabatically more than 250,000 trapped molecules; these can be converted back to atoms by reversing the scan. The small binding energy of the molecules is controlled by detuning the magnetic field away from the Feshbach resonance, and can be varied over a wide range. We directly detect these weakly bound molecules through their radio-frequency photodissociation spectra; these probe the molecular wavefunction, and yield binding energies that are consistent with theory.  相似文献   

5.
U Al Khawaja  H Stoof 《Nature》2001,411(6840):918-920
Multi-component Bose-Einstein condensates provide opportunities to explore experimentally the wealth of physics associated with the spin degrees of freedom. The ground-state properties and line-like vortex excitations of these quantum systems have been studied theoretically. In principle, nontrivial spin textures consisting of point-like topological excitations, or skyrmions, could exist in a multi-component Bose-Einstein condensate, owing to the superfluid nature of the gas. Although skyrmion excitations are already known in the context of nuclear physics and the quantum-Hall effect, creating these excitations in an atomic condensate would offer an opportunity to study their physical behaviour in much greater detail, while also enabling an ab initio comparison between theory and experiment. Here we investigate theoretically the stability of skyrmions in a fictitious spin-1/2 condensate of 87Rb atoms. We find that skyrmions can exist in such a gas only as a metastable state, but with a lifetime comparable to (or even longer than) the typical lifetime of the condensate itself.  相似文献   

6.
For a system at a temperature of absolute zero, all thermal fluctuations are frozen out, while quantum fluctuations prevail. These microscopic quantum fluctuations can induce a macroscopic phase transition in the ground state of a many-body system when the relative strength of two competing energy terms is varied across a critical value. Here we observe such a quantum phase transition in a Bose-Einstein condensate with repulsive interactions, held in a three-dimensional optical lattice potential. As the potential depth of the lattice is increased, a transition is observed from a superfluid to a Mott insulator phase. In the superfluid phase, each atom is spread out over the entire lattice, with long-range phase coherence. But in the insulating phase, exact numbers of atoms are localized at individual lattice sites, with no phase coherence across the lattice; this phase is characterized by a gap in the excitation spectrum. We can induce reversible changes between the two ground states of the system.  相似文献   

7.
Many-particle entanglement with Bose-Einstein condensates   总被引:9,自引:0,他引:9  
Sørensen A  Duan LM  Cirac JI  Zoller P 《Nature》2001,409(6816):63-66
The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics. So far, up to four atoms have been entangled in a controlled way. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose-Einstein condensates fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose-Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.  相似文献   

8.
Vortices occur naturally in a wide range of gases and fluids, from macroscopic to microscopic scales. In Bose-Einstein condensates of dilute atomic gases, superfluid helium and superconductors, the existence of vortices is a consequence of the quantum nature of the system. Quantized vortices of supercurrent are generated by magnetic flux penetrating the material, and play a key role in determining the material properties and the performance of superconductor-based devices. At high temperatures the dynamics of such vortices are essentially classical, while at low temperatures previous experiments have suggested collective quantum dynamics. However, the question of whether vortex tunnelling occurs at low temperatures has been addressed only for large collections of vortices. Here we study the quantum dynamics of an individual vortex in a superconducting Josephson junction. By measuring the statistics of the vortex escape from a controllable pinning potential, we demonstrate the existence of quantized levels of the vortex energy within the trapping potential well and quantum tunnelling of the vortex through the pinning barrier.  相似文献   

9.
Stewart JT  Gaebler JP  Jin DS 《Nature》2008,454(7205):744-747
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.  相似文献   

10.
Ginsberg NS  Garner SR  Hau LV 《Nature》2007,445(7128):623-626
In recent years, significant progress has been achieved in manipulating matter with light, and light with matter. Resonant laser fields interacting with cold, dense atom clouds provide a particularly rich system. Such light fields interact strongly with the internal electrons of the atoms, and couple directly to external atomic motion through recoil momenta imparted when photons are absorbed and emitted. Ultraslow light propagation in Bose-Einstein condensates represents an extreme example of resonant light manipulation using cold atoms. Here we demonstrate that a slow light pulse can be stopped and stored in one Bose-Einstein condensate and subsequently revived from a totally different condensate, 160 mum away; information is transferred through conversion of the optical pulse into a travelling matter wave. In the presence of an optical coupling field, a probe laser pulse is first injected into one of the condensates where it is spatially compressed to a length much shorter than the coherent extent of the condensate. The coupling field is then turned off, leaving the atoms in the first condensate in quantum superposition states that comprise a stationary component and a recoiling component in a different internal state. The amplitude and phase of the spatially localized light pulse are imprinted on the recoiling part of the wavefunction, which moves towards the second condensate. When this 'messenger' atom pulse is embedded in the second condensate, the system is re-illuminated with the coupling laser. The probe light is driven back on and the messenger pulse is coherently added to the matter field of the second condensate by way of slow-light-mediated atomic matter-wave amplification. The revived light pulse records the relative amplitude and phase between the recoiling atomic imprint and the revival condensate. Our results provide a dramatic demonstration of coherent optical information processing with matter wave dynamics. Such quantum control may find application in quantum information processing and wavefunction sculpting.  相似文献   

11.
Macroscopically ordered state in an exciton system   总被引:2,自引:0,他引:2  
Butov LV  Gossard AC  Chemla DS 《Nature》2002,418(6899):751-754
There is a rich variety of quantum liquids -- such as superconductors, liquid helium and atom Bose-Einstein condensates -- that exhibit macroscopic coherence in the form of ordered arrays of vortices. Experimental observation of a macroscopically ordered electronic state in semiconductors has, however, remained a challenging and relatively unexplored problem. A promising approach for the realization of such a state is to use excitons, bound pairs of electrons and holes that can form in semiconductor systems. At low densities, excitons are Bose-particles, and at low temperatures, of the order of a few kelvin, excitons can form a quantum liquid -- that is, a statistically degenerate Bose gas or even a Bose-Einstein condensate. Here we report photoluminescence measurements of a quasi-two-dimensional exciton gas in GaAs/AlGaAs coupled quantum wells and the observation of a macroscopically ordered exciton state. Our spatially resolved measurements reveal fragmentation of the ring-shaped emission pattern into circular structures that form periodic arrays over lengths up to 1 mm.  相似文献   

12.
Atomic physics and quantum optics using superconducting circuits   总被引:1,自引:0,他引:1  
You JQ  Nori F 《Nature》2011,474(7353):589-597
Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.  相似文献   

13.
14.
Symmetry-breaking interactions have a crucial role in many areas of physics, ranging from classical ferrofluids to superfluid (3)He and d-wave superconductivity. For superfluid quantum gases, a variety of new physical phenomena arising from the symmetry-breaking interaction between electric or magnetic dipoles are expected. Novel quantum phases in optical lattices, such as chequerboard or supersolid phases, are predicted for dipolar bosons. Dipolar interactions can also enrich considerably the physics of quantum gases with internal degrees of freedom. Arrays of dipolar particles could be used for efficient quantum information processing. Here we report the realization of a chromium Bose-Einstein condensate with strong dipolar interactions. By using a Feshbach resonance, we reduce the usual isotropic contact interaction, such that the anisotropic magnetic dipole-dipole interaction between 52Cr atoms becomes comparable in strength. This induces a change of the aspect ratio of the atom cloud; for strong dipolar interactions, the inversion of ellipticity during expansion (the usual 'smoking gun' evidence for a Bose-Einstein condensate) can be suppressed. These effects are accounted for by taking into account the dipolar interaction in the superfluid hydrodynamic equations governing the dynamics of the gas, in the same way as classical ferrofluids can be described by including dipolar terms in the classical hydrodynamic equations. Our results are a first step in the exploration of the unique properties of quantum ferrofluids.  相似文献   

15.
薛锐 《科学技术与工程》2012,12(7):1584-1585,1590
当玻色爱因斯坦凝聚体处于一维周期量子阱中的时候,我们可以得到定态GP方程的一组精确解,利用这组精确解我们对玻色爱因斯坦凝聚体在一维周期量子阱中的有效质量进行了研究,经过研究发现原子间的非线性相互作用使得有效质量增大。  相似文献   

16.
Bose-Einstein condensation of atomic gases   总被引:2,自引:0,他引:2  
Anglin JR  Ketterle W 《Nature》2002,416(6877):211-218
The early experiments on Bose-Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers - devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose-Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.  相似文献   

17.
研究拉曼耦合玻色-爱因斯坦凝聚原子系统,在初始态具有量子相干性时纠缠相干态的生成,讨论了初始量子相干性对所生成的纠缠态的影响,指出初始量子相干性只影响所生成的纠缠相干态各组分之间的相位,不影响它们的振幅.  相似文献   

18.
Nonlinear and quantum atom optics   总被引:2,自引:0,他引:2  
Rolston SL  Phillips WD 《Nature》2002,416(6877):219-224
Coherent matter waves in the form of Bose-Einstein condensates have led to the development of nonlinear and quantum atom optics - the de Broglie wave analogues of nonlinear and quantum optics with light. In nonlinear atom optics, four-wave mixing of matter waves and mixing of combinations of light and matter waves have been observed; such progress culminated in the demonstration of phase-coherent matter-wave amplification. Solitons represent another active area in nonlinear atom optics: these non-dispersing propagating modes of the equation that governs Bose-Einstein condensates have been created experimentally, and observed subsequently to break up into vortices. Quantum atom optics is concerned with the statistical properties and correlations of matter-wave fields. A first step in this area is the measurement of reduced number fluctuations in a Bose-Einstein condensate partitioned into a series of optical potential wells.  相似文献   

19.
Hadzibabic Z  Krüger P  Cheneau M  Battelier B  Dalibard J 《Nature》2006,441(7097):1118-1121
Any state of matter is classified according to its order, and the type of order that a physical system can possess is profoundly affected by its dimensionality. Conventional long-range order, as in a ferromagnet or a crystal, is common in three-dimensional systems at low temperature. However, in two-dimensional systems with a continuous symmetry, true long-range order is destroyed by thermal fluctuations at any finite temperature. Consequently, for the case of identical bosons, a uniform two-dimensional fluid cannot undergo Bose-Einstein condensation, in contrast to the three-dimensional case. However, the two-dimensional system can form a 'quasi-condensate' and become superfluid below a finite critical temperature. The Berezinskii-Kosterlitz-Thouless (BKT) theory associates this phase transition with the emergence of a topological order, resulting from the pairing of vortices with opposite circulation. Above the critical temperature, proliferation of unbound vortices is expected. Here we report the observation of a BKT-type crossover in a trapped quantum degenerate gas of rubidium atoms. Using a matter wave heterodyning technique, we observe both the long-wavelength fluctuations of the quasi-condensate phase and the free vortices. At low temperatures, the gas is quasi-coherent on the length scale set by the system size. As the temperature is increased, the loss of long-range coherence coincides with the onset of proliferation of free vortices. Our results provide direct experimental evidence for the microscopic mechanism underlying the BKT theory, and raise new questions regarding coherence and superfluidity in mesoscopic systems.  相似文献   

20.
Bose-Einstein condensation on a microelectronic chip   总被引:7,自引:0,他引:7  
Hänsel W  Hommelhoff P  Hänsch TW  Reichel J 《Nature》2001,413(6855):498-501
Although Bose-Einstein condensates of ultracold atoms have been experimentally realizable for several years, their formation and manipulation still impose considerable technical challenges. An all-optical technique that enables faster production of Bose-Einstein condensates was recently reported. Here we demonstrate that the formation of a condensate can be greatly simplified using a microscopic magnetic trap on a chip. We achieve Bose-Einstein condensation inside the single vapour cell of a magneto-optical trap in as little as 700 ms-more than a factor of ten faster than typical experiments, and a factor of three faster than the all-optical technique. A coherent matter wave is emitted normal to the chip surface when the trapped atoms are released into free fall; alternatively, we couple the condensate into an 'atomic conveyor belt', which is used to transport the condensed cloud non-destructively over a macroscopic distance parallel to the chip surface. The possibility of manipulating laser-like coherent matter waves with such an integrated atom-optical system holds promise for applications in interferometry, holography, microscopy, atom lithography and quantum information processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号