首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Curvature of clathrin-coated pits driven by epsin   总被引:33,自引:0,他引:33  
Ford MG  Mills IG  Peter BJ  Vallis Y  Praefcke GJ  Evans PR  McMahon HT 《Nature》2002,419(6905):361-366
Clathrin-mediated endocytosis involves cargo selection and membrane budding into vesicles with the aid of a protein coat. Formation of invaginated pits on the plasma membrane and subsequent budding of vesicles is an energetically demanding process that involves the cooperation of clathrin with many different proteins. Here we investigate the role of the brain-enriched protein epsin 1 in this process. Epsin is targeted to areas of endocytosis by binding the membrane lipid phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)). We show here that epsin 1 directly modifies membrane curvature on binding to PtdIns(4,5)P(2) in conjunction with clathrin polymerization. We have discovered that formation of an amphipathic alpha-helix in epsin is coupled to PtdIns(4,5)P(2) binding. Mutation of residues on the hydrophobic region of this helix abolishes the ability to curve membranes. We propose that this helix is inserted into one leaflet of the lipid bilayer, inducing curvature. On lipid monolayers epsin alone is sufficient to facilitate the formation of clathrin-coated invaginations.  相似文献   

2.
Clathrin is required for the function of the mitotic spindle   总被引:1,自引:0,他引:1  
Royle SJ  Bright NA  Lagnado L 《Nature》2005,434(7037):1152-1157
Clathrin has an established function in the generation of vesicles that transfer membrane and proteins around the cell. The formation of clathrin-coated vesicles occurs continuously in non-dividing cells, but is shut down during mitosis, when clathrin concentrates at the spindle apparatus. Here, we show that clathrin stabilizes fibres of the mitotic spindle to aid congression of chromosomes. Clathrin bound to the spindle directly by the amino-terminal domain of clathrin heavy chain. Depletion of clathrin heavy chain using RNA interference prolonged mitosis; kinetochore fibres were destabilized, leading to defective congression of chromosomes to the metaphase plate and persistent activation of the spindle checkpoint. Normal mitosis was rescued by clathrin triskelia but not the N-terminal domain of clathrin heavy chain, indicating that stabilization of kinetochore fibres was dependent on the unique structure of clathrin. The importance of clathrin for normal mitosis may be relevant to understanding human cancers that involve gene fusions of clathrin heavy chain.  相似文献   

3.
Breidenbach MA  Brunger AT 《Nature》2004,432(7019):925-929
Clostridal neurotoxins (CNTs) are the causative agents of the neuroparalytic diseases botulism and tetanus. CNTs impair neuronal exocytosis through specific proteolysis of essential proteins called SNAREs. SNARE assembly into a low-energy ternary complex is believed to catalyse membrane fusion, precipitating neurotransmitter release; this process is attenuated in response to SNARE proteolysis. Site-specific SNARE hydrolysis is catalysed by the CNT light chains, a unique group of zinc-dependent endopeptidases. The means by which a CNT properly identifies and cleaves its target SNARE has been a subject of much speculation; it is thought to use one or more regions of enzyme-substrate interaction remote from the active site (exosites). Here we report the first structure of a CNT endopeptidase in complex with its target SNARE at a resolution of 2.1 A: botulinum neurotoxin serotype A (BoNT/A) protease bound to human SNAP-25. The structure, together with enzyme kinetic data, reveals an array of exosites that determine substrate specificity. Substrate orientation is similar to that of the general zinc-dependent metalloprotease thermolysin. We observe significant structural changes near the toxin's catalytic pocket upon substrate binding, probably serving to render the protease competent for catalysis. The novel structures of the substrate-recognition exosites could be used for designing inhibitors specific to BoNT/A.  相似文献   

4.
Hu K  Carroll J  Fedorovich S  Rickman C  Sukhodub A  Davletov B 《Nature》2002,415(6872):646-650
Release of neurotransmitter occurs when synaptic vesicles fuse with the plasma membrane. This neuronal exocytosis is triggered by calcium and requires three SNARE (soluble-N-ethylmaleimide-sensitive factor attachment protein receptors) proteins: synaptobrevin (also known as VAMP) on the synaptic vesicle, and syntaxin and SNAP-25 on the plasma membrane. Neuronal SNARE proteins form a parallel four-helix bundle that is thought to drive the fusion of opposing membranes. As formation of this SNARE complex in solution does not require calcium, it is not clear what function calcium has in triggering SNARE-mediated membrane fusion. We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited. Calcium at micromolar concentrations triggers SNARE complex formation and fusion between synaptic vesicles and reconstituted target membranes. Although calcium does promote interaction of SNARE proteins between opposing membranes, it does not act by releasing synaptobrevin from synaptic vesicle restriction. Rather, our data suggest a mechanism in which calcium-triggered membrane apposition enables syntaxin and SNAP-25 to engage synaptobrevin, leading to membrane fusion.  相似文献   

5.
Topological restriction of SNARE-dependent membrane fusion   总被引:16,自引:0,他引:16  
Parlati F  McNew JA  Fukuda R  Miller R  Söllner TH  Rothman JE 《Nature》2000,407(6801):194-198
To fuse transport vesicles with target membranes, proteins of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex must be located on both the vesicle (v-SNARE) and the target membrane (t-SNARE). In yeast, four integral membrane proteins, Sed5, Bos1, Sec22 and Bet1 (refs 2-6), each probably contribute a single helix to form the SNARE complex that is needed for transport from endoplasmic reticulum to Golgi. This generates a four-helix bundle, which ultimately mediates the actual fusion event. Here we explore how the anchoring arrangement of the four helices affects their ability to mediate fusion. We reconstituted two populations of phospholipid bilayer vesicles, with the individual SNARE proteins distributed in all possible combinations between them. Of the eight non-redundant permutations of four subunits distributed over two vesicle populations, only one results in membrane fusion. Fusion only occurs when the v-SNARE Bet1 is on one membrane and the syntaxin heavy chain Sed5 and its two light chains, Bos1 and Sec22, are on the other membrane where they form a functional t-SNARE. Thus, each SNARE protein is topologically restricted by design to function either as a v-SNARE or as part of a t-SNARE complex.  相似文献   

6.
Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat   总被引:14,自引:0,他引:14  
Bi X  Corpina RA  Goldberg J 《Nature》2002,419(6904):271-277
COPII-coated vesicles form on the endoplasmic reticulum by the stepwise recruitment of three cytosolic components: Sar1-GTP to initiate coat formation, Sec23/24 heterodimer to select SNARE and cargo molecules, and Sec13/31 to induce coat polymerization and membrane deformation. Crystallographic analysis of the Saccharomyces cerevisiae Sec23/24-Sar1 complex reveals a bow-tie-shaped structure, 15 nm long, with a membrane-proximal surface that is concave and positively charged to conform to the size and acidic-phospholipid composition of the COPII vesicle. Sec23 and Sar1 form a continuous surface stabilized by a non-hydrolysable GTP analogue, and Sar1 has rearranged from the GDP conformation to expose amino-terminal residues that will probably embed in the bilayer. The GTPase-activating protein (GAP) activity of Sec23 involves an arginine side chain inserted into the Sar1 active site. These observations establish the structural basis for GTP-dependent recruitment of a vesicular coat complex, and for uncoating through coat-controlled GTP hydrolysis.  相似文献   

7.
Clathrin-coated pits invaginate from specific membrane compartments and pinch off as coated vesicles. These vesicles then uncoat rapidly once released. The Hsc70 molecular chaperone effects the uncoating reaction, and is guided to appropriate locations on clathrin lattices by the J-domain-containing co-chaperone molecule auxilin. This raises the question of how a local event such as ATP hydrolysis by Hsc70 can catalyse a global disassembly. Here, we have used electron cryomicroscopy to determine 12-A-resolution structures of in-vitro-assembled clathrin coats in association with a carboxy-terminal fragment of auxilin that contains both the clathrin-binding region and the J domain. We have located the auxilin fragment by computing differences between these structures and those lacking auxilin (described in an accompanying paper). Auxilin binds within the clathrin lattice near contacts between an inward-projecting C-terminal helical tripod and the crossing of two 'ankle' segments; it also contacts the terminal domain of yet another clathrin 'leg'. It therefore recruits Hsc70 to the neighbourhood of a set of critical interactions. Auxilin binding produces a local change in heavy-chain contacts, creating a detectable global distortion of the clathrin coat. We propose a mechanism by which local destabilization of the lattice promotes general uncoating.  相似文献   

8.
Cai H  Yu S  Menon S  Cai Y  Lazarova D  Fu C  Reinisch K  Hay JC  Ferro-Novick S 《Nature》2007,445(7130):941-944
The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.  相似文献   

9.
A genomic perspective on membrane compartment organization   总被引:40,自引:0,他引:40  
Bock JB  Matern HT  Peden AA  Scheller RH 《Nature》2001,409(6822):839-841
Now that whole genome sequences are available for many eukaryotic organisms from yeast to man, we can form broad hypotheses on the basis of the relative expansion of protein families. To investigate the molecular mechanisms responsible for the organization of membrane compartments, we identified members of the SNARE, coat complex, Rab and Sec1 protein families in four eukaryotic genomes. Of these families only the Rab family expanded from the unicellular yeast to the multicellular fly and worm. All families were expanded in humans, where we find 35 SNAREs, 60 Rabs and 53 coat complex subunits. In addition, we were able to resolve the SNARE class of proteins into four distinct subfamilies.  相似文献   

10.
Polarized exocytosis requires coordination between the actin cytoskeleton and the exocytic machinery responsible for fusion of secretory vesicles at specific sites on the plasma membrane. Fusion requires formation of a complex between a vesicle-bound R-SNARE and plasma membrane Qa, Qb and Qc SNARE proteins. Proteins in the lethal giant larvae protein family, including lethal giant larvae and tomosyn in metazoans and Sro7 in yeast, interact with Q-SNAREs and are emerging as key regulators of polarized exocytosis. The crystal structure of Sro7 reveals two seven-bladed WD40 beta-propellers followed by a 60-residue-long 'tail', which is bound to the surface of the amino-terminal propeller. Deletion of the Sro7 tail enables binding to the Qbc SNARE region of Sec9 and this interaction inhibits SNARE complex assembly. The N-terminal domain of Sec9 provides a second, high-affinity Sro7 interaction that is unaffected by the tail. The results suggest that Sro7 acts as an allosteric regulator of exocytosis through interactions with factors that control the tail. Sequence alignments indicate that lethal giant larvae and tomosyn have a two-beta-propeller fold similar to that of Sro7, but only tomosyn appears to retain the regulatory tail.  相似文献   

11.
Clathrin self-assembly is mediated by a tandemly repeated superhelix.   总被引:12,自引:0,他引:12  
Clathrin is a triskelion-shaped cytoplasmic protein that polymerizes into a polyhedral lattice on intracellular membranes to form protein-coated membrane vesicles. Lattice formation induces the sorting of membrane proteins during endocytosis and organelle biogenesis by interacting with membrane-associated adaptor molecules. The clathrin triskelion is a trimer of heavy-chain subunits (1,675 residues), each binding a single light-chain subunit, in the hub domain (residues 1,074-1,675). Light chains negatively modulate polymerization so that intracellular clathrin assembly is adaptor-dependent. Here we report the atomic structure, to 2.6 A resolution, of hub residues 1,210-1,516 involved in mediating spontaneous clathrin heavy-chain polymerization and light-chain association. The hub fragment folds into an elongated coil of alpha-helices, and alignment analyses reveal a 145-residue motif that is repeated seven times along the filamentous leg and appears in other proteins involved in vacuolar protein sorting. The resulting model provides a three-dimensional framework for understanding clathrin heavy-chain self-assembly, light-chain binding and trimerization.  相似文献   

12.
Membrane-enveloped vesicles travel among the compartments of the cytoplasm of eukaryotic cells, delivering their specific cargo to programmed locations by membrane fusion. The pairing of vesicle v-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) with target membrane t-SNAREs has a central role in intracellular membrane fusion. We have tested all of the potential v-SNAREs encoded in the yeast genome for their capacity to trigger fusion by partnering with t-SNAREs that mark the Golgi, the vacuole and the plasma membrane. Here we find that, to a marked degree, the pattern of membrane flow in the cell is encoded and recapitulated by its isolated SNARE proteins, as predicted by the SNARE hypothesis.  相似文献   

13.
The Rab5 effector EEA1 is a core component of endosome docking   总被引:44,自引:0,他引:44  
Intracellular membrane docking and fusion requires the interplay between soluble factors and SNAREs. The SNARE hypothesis postulates that pairing between a vesicular v-SNARE and a target membrane z-SNARE is the primary molecular interaction underlying the specificity of vesicle targeting as well as lipid bilayer fusion. This proposal is supported by recent studies using a minimal artificial system. However, several observations demonstrate that SNAREs function at multiple transport steps and can pair promiscuously, questioning the role of SNAREs in conveying vesicle targeting. Moreover, other proteins have been shown to be important in membrane docking or tethering. Therefore, if the minimal machinery is defined as the set of proteins sufficient to reproduce in vitro the fidelity of vesicle targeting, docking and fusion as in vivo, then SNAREs are not sufficient to specify vesicle targeting. Endosome fusion also requires cytosolic factors and is regulated by the small GTPase Rab5. Here we show that Rab5-interacting soluble proteins can completely substitute for cytosol in an in vivo endosome-fusion assay, and that the Rab5 effector EEA1 is the only factor necessary to confer minimal fusion activity. Rab5 and other associated proteins seem to act upstream of EEA1, implying that Rab5 effectors comprise both regulatory molecules and mechanical components of the membrane transport machinery. We further show that EEA1 mediates endosome docking and, together with SNAREs, leads to membrane fusion.  相似文献   

14.
Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.  相似文献   

15.
Jin R  Rummel A  Binz T  Brunger AT 《Nature》2006,444(7122):1092-1095
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and cause the neuroparalytic syndrome of botulism. With a lethal dose of 1 ng kg(-1), they pose a biological hazard to humans and a serious potential bioweapon threat. BoNTs bind with high specificity at neuromuscular junctions and they impair exocytosis of synaptic vesicles containing acetylcholine through specific proteolysis of SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors), which constitute part of the synaptic vesicle fusion machinery. The molecular details of the toxin-cell recognition have been elusive. Here we report the structure of a BoNT in complex with its protein receptor: the receptor-binding domain of botulinum neurotoxin serotype B (BoNT/B) bound to the luminal domain of synaptotagmin II, determined at 2.15 A resolution. On binding, a helix is induced in the luminal domain which binds to a saddle-shaped crevice on a distal tip of BoNT/B. This crevice is adjacent to the non-overlapping ganglioside-binding site of BoNT/B. Synaptotagmin II interacts with BoNT/B with nanomolar affinity, at both neutral and acidic endosomal pH. Biochemical and neuronal ex vivo studies of structure-based mutations indicate high specificity and affinity of the interaction, and high selectivity of BoNT/B among synaptotagmin I and II isoforms. Synergistic binding of both synaptotagmin and ganglioside imposes geometric restrictions on the initiation of BoNT/B translocation after endocytosis. Our results provide the basis for the rational development of preventive vaccines or inhibitors against these neurotoxins.  相似文献   

16.
J E Richmond  R M Weimer  E M Jorgensen 《Nature》2001,412(6844):338-341
The priming step of synaptic vesicle exocytosis is thought to require the formation of the SNARE complex, which comprises the proteins synaptobrevin, SNAP-25 and syntaxin. In solution syntaxin adopts a default, closed configuration that is incompatible with formation of the SNARE complex. Specifically, the amino terminus of syntaxin binds the SNARE motif and occludes interactions with the other SNARE proteins. The N terminus of syntaxin also binds the presynaptic protein UNC-13 (ref. 5). Studies in mouse, Drosophila and Caenorhabditis elegans suggest that UNC-13 functions at a post-docking step of exocytosis, most likely during synaptic vesicle priming. Therefore, UNC-13 binding to the N terminus of syntaxin may promote the open configuration of syntaxin. To test this model, we engineered mutations into C. elegans syntaxin that cause the protein to adopt the open configuration constitutively. Here we demonstrate that the open form of syntaxin can bypass the requirement for UNC-13 in synaptic vesicle priming. Thus, it is likely that UNC-13 primes synaptic vesicles for fusion by promoting the open configuration of syntaxin.  相似文献   

17.
Insulin stimulates glucose uptake in muscle and adipocytes by signalling the translocation of GLUT4 glucose transporters from intracellular membranes to the cell surface. The translocation of GLUT4 may involve signalling pathways that are both independent of and dependent on phosphatidylinositol-3-OH kinase (PI(3)K). This translocation also requires the actin cytoskeleton, and the rapid movement of GLUT4 along linear tracks may be mediated by molecular motors. Here we report that the unconventional myosin Myo1c is present in GLUT4-containing vesicles purified from 3T3-L1 adipocytes. Myo1c, which contains a motor domain, three IQ motifs and a carboxy-terminal cargo domain, is highly expressed in primary and cultured adipocytes. Insulin enhances the localization of Myo1c with GLUT4 in cortical tubulovesicular structures associated with actin filaments, and this colocalization is insensitive to wortmannin. Insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane is augmented by the expression of wild-type Myo1c and inhibited by a dominant-negative cargo domain of Myo1c. A decrease in the expression of endogenous Myo1c mediated by small interfering RNAs inhibits insulin-stimulated uptake of 2-deoxyglucose. Thus, myosin Myo1c functions in a PI(3)K-independent insulin signalling pathway that controls the movement of intracellular GLUT4-containing vesicles to the plasma membrane.  相似文献   

18.
Four high-molecular-weight proteins form the main subunits of the coat of Golgi-derived (non-clathrin) coated vesicles. One of these coat proteins, beta-COP, is identical to a Golgi-associated protein of relative mass 110,000 (110K) that shares homology with the adaptin proteins of clathrin-coated vesicles. This connection, and the comparable molecular weights of the coat proteins of Golgi-derived and clathrin-coated vesicles, indicates that they may be structurally related. The identification of beta-COP as the 110K protein explains the blocking of secretion by the drug brefeldin A.  相似文献   

19.
Matsuura Y  Stewart M 《Nature》2004,432(7019):872-877
The nuclear import and export of macromolecular cargoes through nuclear pore complexes is mediated primarily by carriers such as importin-beta. Importins carry cargoes into the nucleus, whereas exportins carry cargoes to the cytoplasm. Transport is orchestrated by nuclear RanGTP, which dissociates cargoes from importins, but conversely is required for cargo binding to exportins. Here we present the 2.0 A crystal structure of the nuclear export complex formed by exportin Cse1p complexed with its cargo (Kap60p) and RanGTP, thereby providing a structural framework for understanding nuclear protein export and the different functions of RanGTP in export and import. In the complex, Cse1p coils around both RanGTP and Kap60p, stabilizing the RanGTP-state and clamping the Kap60p importin-beta-binding domain, ensuring that only cargo-free Kap60p is exported. Mutagenesis indicated that conformational changes in exportins couple cargo binding to high affinity for RanGTP, generating a spring-loaded molecule to facilitate disassembly of the export complex following GTP hydrolysis in the cytoplasm.  相似文献   

20.
A S Verkman  W I Lencer  D Brown  D A Ausiello 《Nature》1988,333(6170):268-269
The mechanism by which vasopressin rapidly and dramatically increases the water permeability of target epithelial cell membranes is thought to involve a cycle of exo- and endocytosis during which vesicles carrying 'water channels' are successively inserted into, and removed from the apical plasma membrane of epithelial cells. Clusters of intramembranous particles, visible by freeze-fracture electron microscopy and presumed to represent water channels, appear on apical membranes in parallel with increased transepithelial water flow. In the collecting duct, these clusters are located in clathrin-coated pits which are subsequently internalized. There has been no direct evidence, however, that subcellular membranes in vasopressin-sensitive epithelia contain functional water channels. In this report, we have used fluorophores that are sensitive to volume and do not pass through membranes to label and to measure directly the osmotic water permeability of endocytosed vesicles isolated from renal papilla. We present direct evidence that vasopressin induces the appearance of a population of endocytic vesicles whose limiting membranes contain water channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号