首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyman RW  Fung E  Conway A  Kurdi O  Mao J  Miranda M  Nakao B  Rowley D  Tamaki T  Wang F  Davis RW 《Nature》2002,419(6906):534-537
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people every year. To stimulate basic research on the disease, and to promote the development of effective drugs and vaccines against the parasite, the complete genome of P. falciparum clone 3D7 has been sequenced, using a chromosome-by-chromosome shotgun strategy. Here we report the nucleotide sequence of the third largest of the parasite's 14 chromosomes, chromosome 12, which comprises about 10% of the 23-megabase genome. As the most (A + T)-rich (80.6%) genome sequenced to date, the P. falciparum genome presented severe problems during the assembly of primary sequence reads. We discuss the methodology that yielded a finished and fully contiguous sequence for chromosome 12. The biological implications of the sequence data are more thoroughly discussed in an accompanying Article (ref. 3).  相似文献   

2.
The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.  相似文献   

3.
Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.  相似文献   

4.
The parasite Plasmodium falciparum is responsible for hundreds of millions of cases of malaria, and kills more than one million African children annually. Here we report an analysis of the genome sequence of P. falciparum clone 3D7. The 23-megabase nuclear genome consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich genome sequenced to date. Genes involved in antigenic variation are concentrated in the subtelomeric regions of the chromosomes. Compared to the genomes of free-living eukaryotic microbes, the genome of this intracellular parasite encodes fewer enzymes and transporters, but a large proportion of genes are devoted to immune evasion and host-parasite interactions. Many nuclear-encoded proteins are targeted to the apicoplast, an organelle involved in fatty-acid and isoprenoid metabolism. The genome sequence provides the foundation for future studies of this organism, and is being exploited in the search for new drugs and vaccines to fight malaria.  相似文献   

5.
The mosquito-borne malaria parasite Plasmodium falciparum kills an estimated 0.7-2.7 million people every year, primarily children in sub-Saharan Africa. Without effective interventions, a variety of factors-including the spread of parasites resistant to antimalarial drugs and the increasing insecticide resistance of mosquitoes-may cause the number of malaria cases to double over the next two decades. To stimulate basic research and facilitate the development of new drugs and vaccines, the genome of Plasmodium falciparum clone 3D7 has been sequenced using a chromosome-by-chromosome shotgun strategy. We report here the nucleotide sequences of chromosomes 10, 11 and 14, and a re-analysis of the chromosome 2 sequence. These chromosomes represent about 35% of the 23-megabase P. falciparum genome.  相似文献   

6.
Preiser PR  Jarra W  Capiod T  Snounou G 《Nature》1999,398(6728):618-622
The recognition and invasion of host cells are mediated by components of the apical complex of the ookinete, sporozoite and merozoite stages of Plasmodium parasites. The paired rhoptries (organelles involved in host-cell recognition) in the apical complex contain many proteins of as-yet unknown function. In the rodent malaria agent P. yoelii yoelii, a multigene family codes for merozoite rhoptry proteins of relative molecular mass 235,000 (p235 proteins); these proteins are thought to determine the subset of erythrocytes that the parasites invade. Further support for this idea came from the identification of a region in p235 with weak but significant homology to reticulocyte-binding protein-2 of P. vivax and the demonstration that at least one p235 member binds to the erythrocyte surface membrane. Here, using single, micromanipulated P.y.yoelii parasites, we describe a new mechanism of gene expression by which the merozoites originating from a single schizont each express a distinct member of this multigene family. We propose that this new type of clonal phenotypic variation provides the parasite with a survival strategy in the mammalian host; this strategy contributes to the observed chronicity of malarial infections. This phenomenon is genetically and functionally distinct from classical antigenic variation, which is mediated by the var multigene family of P. falciparum.  相似文献   

7.
Winzeler EA 《Nature》2008,455(7214):751-756
For many pathogens the availability of genome sequence, permitting genome-dependent methods of research, can partially substitute for powerful forward genetic methods (genome-independent) that have advanced model organism research for decades. In 2002 the genome sequence of Plasmodium falciparum, the parasite causing the most severe type of human malaria, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new therapeutic approaches. This review will focus on the basic research discoveries that have depended, in part, on the availability of the Plasmodium genome sequences.  相似文献   

8.
Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described, and it provides an opportunity for comparison with the recently completed P. vivax genome and other sequenced Plasmodium genomes. In contrast to other Plasmodium genomes, putative variant antigen families are dispersed throughout the genome and are associated with intrachromosomal telomere repeats. One of these families, the KIRs, contains sequences that collectively match over one-half of the host CD99 extracellular domain, which may represent an unusual form of molecular mimicry.  相似文献   

9.
Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria   总被引:20,自引:0,他引:20  
Schofield L  Hewitt MC  Evans K  Siomos MA  Seeberger PH 《Nature》2002,418(6899):785-789
The malaria parasite Plasmodium falciparum infects 5-10% of the world's population and kills two million people annually. Fatalities are thought to result in part from pathological reactions initiated by a malarial toxin. Glycosylphosphatidylinositol (GPI) originating from the parasite has the properties predicted of a toxin; however, a requirement for toxins in general and GPI in particular in malarial pathogenesis and fatality remains unproven. As anti-toxic vaccines can be highly effective public health tools, we sought to determine whether anti-GPI vaccination could prevent pathology and fatalities in the Plasmodium berghei/rodent model of severe malaria. The P. falciparum GPI glycan of the sequence NH(2)-CH(2)-CH(2)-PO(4)-(Man alpha 1-2)6Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcNH(2)alpha 1-6myo-inositol-1,2-cyclic-phosphate was chemically synthesized, conjugated to carriers, and used to immunize mice. Recipients were substantially protected against malarial acidosis, pulmonary oedema, cerebral syndrome and fatality. Anti-GPI antibodies neutralized pro-inflammatory activity by P. falciparum in vitro. Thus, we show that GPI is a significant pro-inflammatory endotoxin of parasitic origin, and that several disease parameters in malarious mice are toxin-dependent. GPI may contribute to pathogenesis and fatalities in humans. Synthetic GPI is therefore a prototype carbohydrate anti-toxic vaccine against malaria.  相似文献   

10.
The complexity of the life cycle of the protozoan malaria parasite Plasmodium falciparum has hindered genetic analysis; even the number of chromosomes in P. falciparum is uncertain. The blood stages of rodent malaria parasites are haploid and hybridization with cloned complementary DNAs similarly suggests a haploid genome in P. falciparum blood stages (ref. 4 and our unpublished results). A novel approach to karyoptic and linkage analysis in P. falciparum has been provided recently by the technique of pulsed-field gradient (PFG) gel electrophoresis, which allows the fractionation of DNA molecules of 30-3,000 kilobases (kb), a range including the sizes of intact chromosomal DNA molecules from eukaryotes such as yeast and trypanosomatids. We describe here the fractionation by PFG electrophoresis of chromosomal DNA molecules from P. falciparum into at least seven discrete species which vary in size by up to 20% between different isolates. Several genes for P. faciparum antigens which contain repetitive sequences are located on different chromosomes. Surprisingly, two of the chromosomes seem to contain the same sequences.  相似文献   

11.
The malarial parasite Plasmodium vivax causes disease in humans, including chronic infections and recurrent relapses, but the course of infection is rarely fatal, unlike that caused by Plasmodium falciparum. To investigate differences in pathogenicity between P. vivax and P. falciparum, we have compared the subtelomeric domains in the DNA of these parasites. In P. falciparum, subtelomeric domains are conserved and contain ordered arrays of members of multigene families, such as var, rif and stevor, encoding virulence determinants of cytoadhesion and antigenic variation. Here we identify, through the analysis of a continuous 155,711-base-pair sequence of a P. vivax chromosome end, a multigene family called vir, which is specific to P. vivax. The vir genes are present at about 600-1,000 copies per haploid genome and encode proteins that are immunovariant in natural infections, indicating that they may have a functional role in establishing chronic infection through antigenic variation.  相似文献   

12.
Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum   总被引:14,自引:0,他引:14  
Wootton JC  Feng X  Ferdig MT  Cooper RA  Mu J  Baruch DI  Magill AJ  Su XZ 《Nature》2002,418(6895):320-323
Widespread use of antimalarial agents can profoundly influence the evolution of the human malaria parasite Plasmodium falciparum. Recent selective sweeps for drug-resistant genotypes may have restricted the genetic diversity of this parasite, resembling effects attributed in current debates to a historic population bottleneck. Chloroquine-resistant (CQR) parasites were initially reported about 45 years ago from two foci in southeast Asia and South America, but the number of CQR founder mutations and the impact of chlorquine on parasite genomes worldwide have been difficult to evaluate. Using 342 highly polymorphic microsatellite markers from a genetic map, here we show that the level of genetic diversity varies substantially among different regions of the parasite genome, revealing extensive linkage disequilibrium surrounding the key CQR gene pfcrt and at least four CQR founder events. This disequilibrium and its decay rate in the pfcrt-flanking region are consistent with strong directional selective sweeps occurring over only approximately 20-80 sexual generations, especially a single resistant pfcrt haplotype spreading to very high frequencies throughout most of Asia and Africa. The presence of linkage disequilibrium provides a basis for mapping genes under drug selection in P. falciparum.  相似文献   

13.
14.
15.
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for the exploration of regional differences in allele frequency and of highly differentiated loci in the P.?falciparum genome.  相似文献   

16.
Persistent and recurrent infections by Plasmodium falciparum malaria parasites result from the ability of the parasite to undergo antigenic variation and evade host immune attack. P. falciparum parasites generate high levels of variability in gene families that comprise virulence determinants of cytoadherence and antigenic variation, such as the var genes. These genes encode the major variable parasite protein (PfEMP-1), and are expressed in a mutually exclusive manner at the surface of the erythrocyte infected by P. falciparum. Here we identify a mechanism by which var gene sequences undergo recombination at frequencies much higher than those expected from homologous crossover events alone. These recombination events occur between subtelomeric regions of heterologous chromosomes, which associate in clusters near the nuclear periphery in asexual blood-stage parasites or in bouquet-like configurations near one pole of the elongated nuclei in sexual parasite forms. We propose that the alignment of var genes in heterologous chromosomes facilitates gene conversion and promotes the diversity of antigenic and adhesive phenotypes. The association of virulence factors with a specific nuclear subcompartment may also have implications for variation during mitotic recombination in asexual blood stages.  相似文献   

17.
The annotated genomes of organisms define a 'blueprint' of their possible gene products. Post-genome analyses attempt to confirm and modify the annotation and impose a sense of the spatial, temporal and developmental usage of genetic information by the organism. Here we describe a large-scale, high-accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last two groups provide insights into the biology of the sexual stages of the parasite, and include conserved, stage-specific, secreted and membrane-associated proteins. A subset of these proteins contain domains that indicate a role in cell-cell interactions, and therefore can be evaluated as potential components of a malaria vaccine formulation. We also report a set of peptides with significant matches in the parasite genome but not in the protein set predicted by computational methods.  相似文献   

18.
L G Pologe  J V Ravetch 《Nature》1986,322(6078):474-477
The significant morbidity and mortality associated with Plasmodium falciparum malaria results, in part, from the sequestration of parasitized erythrocytes in postcapillary venules, which may protect the parasite from splenic clearance and contribute to the pathogenesis of cerebral malaria. This sequestration has been linked to the expression of parasite-induced knob structures on the surface of the infected erythrocyte which mediate the cytoadherence phenomenon. While knobs are necessary for cytoadherence, they are not sufficient, requiring both parasite- and host-encoded proteins. Spontaneous mutants of P. falciparum have been isolated from in vitro cultures which lack the ability to express knobs and fail to cytoadhere. A histidine-rich protein has been described which is associated with the knobby phenotype and may be a constituent of the knob. We now report the isolation of complementary DNA clones for a knob-associated histidine-rich protein (KAHRP) and demonstrate that in knobless mutants the gene for this protein has undergone a rearrangement, resulting in a deletion in the 3' coding sequence. Moreover, the chromosome to which the KAHRP gene maps is rearranged in these mutants, producing a telomeric location of the truncated gene. These observations explain the loss of expression of the messenger RNA and protein in such mutants and may explain the loss of the knob itself. The implications for the generation of spontaneous mutations in the parasite by this novel mechanism are discussed.  相似文献   

19.
Plasmodium falciparum causes malaria infections in its human host. Its wide distribution in tropical countries is a major world health problem. Before a vaccine can be produced, the identification and characterization of parasite antigens is necessary. This can be achieved by the cloning and subsequent analysis of genes coding for parasite antigens. Recently established cDNA banks allow the expression of cDNA derived from the simian parasite Plasmodium knowlesi and P. falciparum in Escherichia coli. Recombinants encoding parasite antigens have been identified by immunodetection in both banks. Two of them contain repetitive units of 11 (ref. 7) or 12 (ref. 5) amino acids. We describe here the construction of an expression bank made directly from randomly generated fragments of P. falciparum genomic DNA. We detect several clones which react strongly with human African immune sera. One clone expresses an antigenic determinant composed of occasionally degenerated repeats of a peptide nonamer.  相似文献   

20.
Snow RW  Guerra CA  Noor AM  Myint HY  Hay SI 《Nature》2005,434(7030):214-217
Interest in mapping the global distribution of malaria is motivated by a need to define populations at risk for appropriate resource allocation and to provide a robust framework for evaluating its global economic impact. Comparison of older and more recent malaria maps shows how the disease has been geographically restricted, but it remains entrenched in poor areas of the world with climates suitable for transmission. Here we provide an empirical approach to estimating the number of clinical events caused by Plasmodium falciparum worldwide, by using a combination of epidemiological, geographical and demographic data. We estimate that there were 515 (range 300-660) million episodes of clinical P. falciparum malaria in 2002. These global estimates are up to 50% higher than those reported by the World Health Organization (WHO) and 200% higher for areas outside Africa, reflecting the WHO's reliance upon passive national reporting for these countries. Without an informed understanding of the cartography of malaria risk, the global extent of clinical disease caused by P. falciparum will continue to be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号