首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new process called ‘NO x reduction by coupling combustion with recycling flue gas (RCCRF)’ was proposed to decrease NO x emission during the iron ore sintering process. The simulation test of NO x reduction was performed over sintered ore and in the process of coke combustion. Experimentally, NO x reduction was also carried out by sintering pot test. For sintered ore, the amount of NO x emission is reduced by 15wt%–25wt% at 400–550°C using 2.0vol% H2 or 2.0vol% CO, or reduced by 10wt%–30wt% at 560–720°C using 0.15vol% NH3. NO x reduction is around 10wt% by coupling combustion of pyrolysis gas and coke, or around 16wt% by recycling flue gas into coke combustion. By RCCRF, the maximum NO x reduction ratio is about 23wt% in coke combustion experiment and over 40wt% in sintering pot test.  相似文献   

2.
This work is devoted to the synthesis and characterization of yttrium-doped SrBi2Nb2O9 ceramics prepared by three methods: solid state reaction, co-precipitation, and hydrothermal. Multiple characterizations, specifically scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), were used to validate the structural feature. The crystallite size was estimated by Scherrer’s formula and the Williamson–Hall plot. The effect of the process on the band intensities of the FTIR spectra was investigated. The crystallite size and microstructure of ceramics prepared from different synthesis processes were strongly influenced by the sinterability. SEM images revealed nanograin ceramics for materials prepared by co-precipitation and hydrothermal methods and micrograin ceramics prepared by the solid state method. The synthesized compounds underwent phase transitions at 480–465°C. The dielectric and electrical properties of these Y-doped SrBi2Nb2O9 ceramics appear to be dependent on the grain size.  相似文献   

3.
Al-Ti-O inclusions always clog submerged nozzles in Ti-bearing Al-killed steel. A typical synthesized Al2TiO5 inclusion was immersed in a CaO-SiO2-Al2O3 molten slag for different durations at 1823 K. The Al2TiO5 dissolution paths and mechanism were revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Decreased amounts of Ti and Al and increased amounts of Si and Ca at the dissolution boundary prove that inclusion dissolution and slag penetration simultaneously occur. SiO2 diffuses or penetrates the inclusion more quickly than CaO, as indicated by the w(CaO)/w(SiO2) value in the reaction region. A liquid product (containing 0.7–1.2 w(CaO)/w(SiO2), 15wt%–20wt% Al2O3, and 5wt%–15wt% TiO2) forms on the inclusion surface when Al2TiO5 is dissolved in the slag. Al2TiO5 initially dissolves faster than the diffusion rate of the liquid product toward the bulk slag. With increasing reaction time, the boundary reaches its largest distance, the Al2TiO5 dissolution rate equals the liquid product diffusion rate, and the dissolution process remains stable until the inclusion is completely dissolved.  相似文献   

4.
The pore structure of Cr2O3/Al2O3 catalysts and the surface chemical properties of these pores were characterized by positron lifetime and coincidence Doppler broadening (CDB) measurements. Four lifetime components could be resolved from the positron lifetime spectrum, with two long lifetime components and two short lifetime components. The two long lifetimes τ4 and τ3 are attributed to ortho-positronium (o-Ps) annihilation in large pores and microvoids, respectively. With increasing Cr2O3 content, both τ4 and its intensity I4 show sharp decrease, while τ3 and its intensity I3 keep nearly unchanged. The Doppler broadening S parameters also show sharp decrease with increasing Cr2O3 content. Detailed analysis of the CDB spectrum reveals that the parapositronium (p-Ps) intensity also decreases with increasing Cr2O3 content. This indicates that the change of o-Ps lifetime τ4 is due to the chemical quenching by Cr2O3 but not spin-conversion of positronium. The decrease of o-Ps intensity I4 indicates that Cr2O3 also inhibits positronium formation.  相似文献   

5.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

6.
A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air cal- cining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150-200℃, and then by washing with hydro- chloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400-500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180-200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.  相似文献   

7.
The giant magneto-optical Faraday effect of nanometer ferromagnetic metal-semiconductor matrix Fe-ln2O3 granular films prepared by the radio frequency sputtering are studied. The result shows that the Faraday rotation angle θF value of the granular film samples with Fe volume fraction x = 35% is of the order of 10^5(°)/cm at room temperature. Temperature dependence of the Faraday rotation angle θF of Fe0.35(In2O3)0.65 granular films shows that θF value below 10 K increases rapidly with the decrease of the temperature, and when T= 4.2 K, θF value is 106(°)/cm. Through the study of the dependence of low field susceptibility on temperature and the hysteresis loops at different temperatures, it has been found that when the temperature decreases to a critical point Tp = 10 K, the transformation of state from ferro-agnetic to spin-glass-like occurs in Fe0.35(In2O3)0.65 granular films. The remarkable increase of the Faraday rotation angle θF value of Fe0.35(In2O3)0.65 granular films below 10 K seems to arise from the sp-d exchange interaction of the granular film samples in the spin-glass-like state.  相似文献   

8.
In this work, network former SiO2 and network intermediate Al2O3 were introduced into typical low-melting binary compositions CaO·B2O3, CaO·2B2O3, and BaO·B2O3 via an aqueous solid-state suspension milling route. Accordingly, multiple-phase aluminosilicate glass-ceramics were directly obtained via liquid-phase sintering at temperatures below 950℃. On the basis of liquid-phase sintering theory, mineral-phase evolutions and glass-phase formations were systematically investigated in a wide MO-SiO2-Al2O3-B2O3 (M=Ca, Ba) composition range. The results indicate that major mineral phases of the aluminosilicate glass-ceramics are Al20B4O36, CaAl2Si2O8, and BaAl2Si2O8 and that the glass-ceramic materials are characterized by dense microstructures and excellent dielectric properties.  相似文献   

9.
Ta-doped In2O3 transparent conductive oxide films were deposited on glass substrates using radio-frequency (RF) sputtering at 300°C. The influence of post-annealing on the structural, morphologic, electrical and optical properties of the films was investigated using X-ray diffraction, field emission scanning electron microscopy, Hall measurements and optical transmission spectroscopy. The obtained films were polycrystalline with a cubic structure and were preferentially oriented in the (222) crystallographic direction. The lowest resistivity, 5.1×10−4 Ω cm, was obtained in the film annealed at 500°C, which is half of that of the un-annealed film (9.9×10−4 Ω cm). The average optical transmittance of the films was over 90%. The optical bandgap was found to decrease with increasing annealing temperature.  相似文献   

10.
The giant magnetocaloric effect Gd5Si2Ge2 alloy was prepared with 99wt% low purity commercial Gd. Powder XRD and magnetic measurements showed that the Gd5Si2Ge2 alloy annealed at 1200℃ for 1h had a significant magnetic- crystallographic first order phase transition at about 270 K. The maximal magnetic entropy change is 17.55 J· kg^-1· K^-1 under a magnetic field change of 0-5 T. The distinct increase of magnetic entropy change belongs to the first-order phase transition from the orthorhombic Gd5Si4-type to the monoclinic Gd5Si2Ge2-type after high temperature heat-treatment.  相似文献   

11.
To synthesize pure γ-La2S3 at lower temperature, lanthanide complex La(Et2S2CN)3·phen, containing La-S bond, was chosen as the precursors to decompose. The obtained samples were characterized by X-ray power diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) with an energy dispersive spectrometer and UV-Vis diffuse reflectance spectra. The decomposition mechanism of the lanthanide complex was studied by thermogravimetric analyses (TGA). The results show that the obtained samples are cubic phase particles with sizes among 20–50 nm and the band gap is 2.97 eV, which is bigger than that of its bulk crystal. TG/DTG results indicate that La(Et2S2CN)3·phen decomposed to γ-La2S3 via La4(Et2S2CN)3 as an intermediate product.  相似文献   

12.
Ni(II)-dien complex was prepared and characterized by X-ray diffraction. The crystal belongs to triclinic system, space group P-1, with crystallographic parametersa=0.888 13(18) nm,b=0.890 10(18) nm,c=1. 591 8(3) nm, α=77.71(3)°, β=89.12(3)°, γ=61.24(3)°,Z=2. The two dien molecules coordinate to the central Ni atom, the six nitrogen atoms form a distorted octahedron. Preliminary pharmacological tests showed this complex had antitumor activity against HepG2 and HL-60 cell linesin vitro. Foundation item, Supported by the National Natural Science Foundation of China (29972034) Biography: Li Tao (1976-), male, Ph. D candidate, research direction: ophthalmology and chemicalbiology.  相似文献   

13.
Plant specimens are collected from the areas between latitude 27°?2′N and 40°57′N, and longitude 88°93°E and 103°24′E, with an altitudinal range from 2210 to 5050 m above the sea level in Qinghai-Tibetan Plateau. The stable carbon isotope analysis indicates that two of Chenopodiaceae and six of Poaceae in the samples are C4 plants. Four of the C4 plants are found in 11 spots with altitudes above 3800 m, and Pennisetum centrasiaticum, Arundinella yunnanensis and Orinus thoroldii are present in six spots above 4000 m, even up to 4520 m. At low CO2 partial pressure, that sufficient energy of high light improving C4 plant's tolerance of low temperature and precipitations concentrating in growing season probably are favorable for C4 plants growing at high altitude in Qinghai-Tibetan Plateau.  相似文献   

14.
TiO2-Graphene Oxide intercalated composite (TiO2-Graphene Oxide) has been successfully prepared at low temperature (80°C) with graphite oxide (GO) and titanium sulfate (Ti(SO4)2) as initial reactants.GO was firstly exfoliated by NaOH and formed single and multi-layered graphite oxide mixture which can be defined as graphene oxide,[TiO]2+ induced by the hydrolysis of Ti(SO4)2 diffused into graphene oxide interlayer by electrostatic attraction.The nucleation and growth of TiO2 crystallites took place at low temperature and TiO2-Graphene Oxide composite was successfully synthesized.Furthermore,the photocatalytic properties of TiO2-Graphene Oxide under the irradiation of UV light were also studied.The results show that the degradation rate of methyl orange is 1.16 mg min-1 g-1(refer to the efficiency of the initial 15 min).Compared with P25 powder,this kind of intercalation composite owns much better efficiency.On the other hand,the reusable properties and stable properties of TiO2-Graphene Oxide intercalated composite are also discussed in this paper.At last,crystalline structure,interface status,thermal properties and microscopic structure of TiO2-Graphene Oxide were characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),thermogravimetric analysis (TGA),field emission scanning electron microscopy (FESEM) and high-resolution Transmission Electron Microscopy (HRTEM).Also,we have analyzed major influencing factors and mechanism of the composite structures which evidently improve the photocatalytic properties.  相似文献   

15.
The compression behavior of Ni77P23 amorphous alloy is investigated at room temperature in a diamond-anvil cell instrument using insitu high pressure energy dispersive X-ray diffraction with a syn- chrotron radiation source. The equation of state is determined by fitting the experimental data accord- ing to Birch-Murnaghan equation: -ΔV/V0=0.08606P-3.2×10-4P2 5.7×10-6P3. It is found that the structure of Ni77P23 amorphous alloy is stable under pressures up to 30.5 GPa.  相似文献   

16.
The effect of B2O3 addition on the aqueous tape casting, sintering, microstructure and microwave dielectric properties of Li2O-Nb2O5-TiO2 ceramics has been investigated. The tape casting slurries exhibit a typical shear-thinning behavior without thixotropy, but the addition of B2O3 increases the viscosity of the slurries significantly. It was found that doping of B2O3 can decrease the tensile strength, strain to failure and density of the green tapes. The sintering temperature could be lowed down to 900℃ with the addition of 2 wt% B2O3 due to the liquid phase effect. No secondary phase is observed. The addition of B2O3 does not induce much degradation on the microwave dielectric properties. Optimum microwave dielectric properties of εr 67, Q×f 6560 GHz are obtained for Li2O-Nb2O5-TiO2 ceramics containing 2 wt% B2O3 sintered at 900 1C. It represents that the ceramics could be promising for multilayer low-temperature co-fired ceramics (LTCC) application.  相似文献   

17.
Spinel compounds LiNi0.5Mn1.3Ti0.2O4 (LNMTO) and Li4Ti5O12 (LTO) were synthesized by different methods. The particle sizes of LNMTO and LTO are 0.5–2 and 0.5–0.8 μm, respectively. The LNMTO/LTO cell exhibits better electrochemical properties at both a low current rate of 0.2C and a high current rate of 1C. When the specific capacity was determined based on the mass of the LNMTO cathode, the LNMTO/LTO cell delivered 137 mA·h·g−1 at 0.2C and 118.2 mA·h·g−1 at 1C, and the corresponding capacity retentions after 30 cycles are 88.5% and 92.4%, respectively.  相似文献   

18.
The 0.1 mol% Er^3+ and 0-2 mol% Yb^3+ codoped Al2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped Al2O3 phase, γ-(Al,Er, Yb)2O3 and θ-(Al,Er, Yb)2O3, was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb^3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er^3+ and 0.5 mol% Yb^3+ codoped Al2O3 powders, which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er^3+-yb^3+ codoped Al2O3 powders.  相似文献   

19.
In this study,TiO2@MgO core-shell film was obtained by using a simple chemical bath deposition method to coat a thin MgO film around TiO2 nanoparticles. The core-shell configuration was characterized by X-ray diffractometer (XRD),scanning elec-tron microscopy (SEM),energy dispersive X-ray spectroscopy (EDX),and high-resolution transmission electron microscopy (HRTEM). Lattice fringes were observed for the TiO2 particles,and the MgO shell showed an amorphous structure,revealing a clear distinction between the core and shell materials. Applying the core-shell film as photoanode to the dye-sensitized solar cells (DSSCs),it shows a superior performance compared to the pure TiO2 electrode. Under the illumination of simulated sunlight (75 mW-cm-2),the short circuit photocurrent (Jsc),the open circuit photovoltage (Voc),and the fill factor (fF) are 8.80 mA-cm-2,646 mV,and 0.69,respectively,and the conversion efficiency (η) in-creased by 21.8% (from 4.32% to 5.26%) when dipping for opti-mum condition.  相似文献   

20.
In-situ pure TiO2 and Fe-doped TiO2 thin films were synthesized on Ti plates via the micro-arc oxidation (MAO) technique. The as-fabricated anatase TiO2 thin film-based conductometric sensors were employed to measure the gas sensitivity to ethanol. The results showed that Fe ions could be easily introduced into the MAO-TiO2 thin films by adding precursor K4(FeCN)6·3H2O into the Na3PO4 electrolyte. The amount of doped Fe ions increased almost linearly with the concentration of K4(FeCN)6·3H2O increasing, eventually affecting the ethanol sensing performances of TiO2 thin films. It was found that the enhanced sensor signals obtained had an optimal concentration of Fe dopant (1.28at%), by which the maximal gas sensor signal to 1000 ppm ethanol was estimated to be 7.91 at 275°C. The response time was generally reduced by doped Fe ions, which could be ascribed to the increase of oxygen vacancies caused by Fe3+ substituting for Ti4+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号