首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以乙炔黑为碳源,采用溶胶凝胶法分步煅烧制备Li3V2 (PO4)3/C,考察碳包覆量对材料的形貌、结构以及电化学性能的影响.结果 表明,碳包覆没有破坏Li3V2 (PO4)3的单斜结构(P21/n),2倍乙炔黑包覆样(C20-LVP)的结晶度良好,包覆层为7 nm.0.1C倍率下,2倍乙炔黑包覆样的放电比容量由空白样(C00-LVP)的103.6 mAh·g-1提升到120.3 mAh/g,循环60次后放电比容量仍有104.5mAh/g,保持率达91%.  相似文献   

2.
采用一步碳热还原法,以一种有机碳源为碳前驱体合成了单斜晶系的Li3V2(PO4)3/C复合材料. 主要研究了合成温度对材料性能的影响. 结果表明: 750~850 ℃时可以获得纯相的正极材料Li3V2(PO4)3;同时首次放电容量达到161 mAh/g;经过50次循环后,750 ℃下的容量保持率仍为83%,表明材料具有良好的循环稳定性能.  相似文献   

3.
采用流变相法成功合成了尖晶石Li2ZnTi3O8.X射线衍射(XRD) 分析结果表明所合成的尖晶石颗粒结晶良好.扫描电子显微镜(SEM)测试结果表明,所得Li2ZnTi3O8粒径较小,分散较均匀.将所合成的样品作为锂离子电池电极材料,采用充放电测试和循环伏安测试研究了其电化学性能.电化学性能测试结果表明,该材料的放电比容量和循环性能都较好,在0.05~3.0 V 电压下,以100 mA/g进行充放电,首次放电比容量为234.6 mAh/g,100次循环后放电比容量仍保持在208.5 mAh/g.  相似文献   

4.
锂离子电池正极材料磷酸钒锂的掺杂   总被引:1,自引:0,他引:1  
为了降低磷酸钒锂(Li3V2(PO4)3)材料成本并提高材料中活性元素V的利用率,该文采用溶胶凝胶/碳热还原法合成了球形锂离子电池正极材料Li3V2(PO4)3及其掺杂不同金属离子(Al3+、Cr3+、Y3+、Ti4+)的衍生物。电化学测试结果表明,经摩尔分数x为5%的金属离子掺杂修饰后的Li3V2(PO4)3材料的首次充放电容量及循环性能均优于经x=10%的金属离子掺杂的材料。其中Al3+和Ti4+的掺杂更加有效,在3.0~4.8 V、0.5 mA下、摩尔分数为5%的Al3+和Ti4+掺杂后的Li3V2(PO4)3样品中首次充电容量分别为178 mAh.g-1和174.9mAh.g-1。80次循环后放电容量均保持在123 mAh.g-1左右。  相似文献   

5.
在氯化胆碱/三乙醇胺低共熔溶剂中制备钠离子电池负极材料NaTi2(PO4)3/C,并用X射线衍射、扫描电镜、循环伏安、交流阻抗和恒电流充放电技术研究反应温度对所得NaTi2(PO4)3/C的结构、形貌以及电化学性能的影响.结果表明:不同反应温度制备的材料均是单相介孔NaTi2(PO4)3/C,合成材料的放电比容量随着反应温度的增大先增大后减小.其中140℃合成的NaTi2(PO4)3/C在10 C倍率下循环500圈后放电比容量为116 mAh/g,具有较好的倍率性能和循环稳定性.  相似文献   

6.
采用溶胶-凝胶结合固相反应制备Li2ZnTi3O8负极材料,通过X线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)及恒电流充放电等手段表征Li2ZnTi3O8负极材料的微观结构和电化学性能.结果表明:Li2ZnTi3O8负极材料具有尖晶石结构特征.Li2ZnTi3O8负极材料在0.02~3 V能够完全可逆脱出与嵌入Li+ ;以30 mA/g的电流密度进行充放电,可逆充电比容量可达219.9 mA·h/g(是理论容量的96%),240 mA/g的电流密度下,其可逆比容量仍可达150 mA·h/g.首次循环之后尖晶石结构的Li2ZnTi3O8材料呈现出良好的循环稳定性.充放电过程中Li+的嵌入和脱出引起结构的变化是完全可逆的.  相似文献   

7.
对在400℃至600℃固相合成的掺氟Li1 xV3O8进行微波后处理,用合成的材料组装成纽扣电池.通过充放电循环实验、XRD、IR和SEM研究了微波如何改善样品的电化学性能.结果发现,微波后处理可以改善材料的结晶度,提高材料的比容量和循环性能.经过微波处理的500℃烧结的掺氟Li1 xV3O8样品的第一循环的放电容量为238mAh/g,第40次循环的放电容量为142mAh/g.均比未经过微波处理的样品的容量提高了12%.微波处理延长了2.8V区的放电平台.  相似文献   

8.
采用蔗糖辅助燃烧法制备了富锂型锂离子电池正极材料Li1.1Mn2O4, XRD表明合成的Li1.1Mn2O4样品具有完整的尖晶石结构. SEM显示样品是由纳米粒子组成. 0.5 C 初始放电比容量为115 mAh/g, 10 C放电比容量可达109 mAh/g. 10 C倍率下循环200次容量保持率为90%. 实验结果表明该材料倍率和循环性能均优良.  相似文献   

9.
正极材料LiFePO4的电化学性能的改进   总被引:9,自引:1,他引:9  
采用固相反应法合成了LiFePO4正极材料,在20mA/g的电流密度下进行恒电流充放电,比容量可以达到135mAh/g,为了改进LiFePO4的性能,提高其高倍率性能,尝试了两种途径并合成出Li(Fe0.8Mn0.2)PO4和LiFePO4/C。低倍率充放电实验得出的两个样品的比容量分别可达到145mAh/g和144mAh/g,而且表现出了良好的循环性能和平坦的电压平台,以上两种方法制备出的材料均具有较好的高倍率性能。  相似文献   

10.
文章采用固相法合成了电化学性能优异的碳包覆的锂离子电池负极材料Li3.9Mn0.1Ti5O12/C,并对材料进行了XRD、激光粒度分析、循环伏安测试及恒电流充放电测试。结果表明:Mn的掺杂未改变材料的晶体结构,由于Mn4+对Li4Ti5O12的晶胞内部的掺杂和C对其晶胞外部的包覆,使复合材料的电导率,大电流循环稳定性和可逆比容量都明显提高。在1C充放电循环时,Li3.9Mn0.1Ti5O12/C首次放电容量为162.4mAh/g,50次循环后,稳定在159.6mAh/g,容量保持率为98.3%;在2C充放电循环时,首次放电容量达到了153.5mAh/g,展示了优良的电化学特性。  相似文献   

11.
采用溶胶-凝胶法合成了Zn^2+取代的锂离子电池正极材料Li1+xZnxMn2-xO4。结构研究结果表明,用这种方法可以在比固相反应低得多的温度下得到单相的尖晶石且制得的材料粒度均匀,粒径大多在150nm左右。半电池循环测试结果表明,起始组成为x=0.06的样品性能最佳,其与锂片组成的半电池在3.0V-4.6V间,以0.10mA/cm^2的电流密度进行充放电的首次充、放电容量分别为131.4mAh/g和129.2mAh/g,经35次循环后容量仍保持在100mAh/g。  相似文献   

12.
采用溶胶-凝胶法和化学沉积法制备了Li4Ti4.75Cu0.25O12/SnO2复合活性材料。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌表征及电化学性能测试。结果表明:Li4Ti4.75Cu0.25O12/SnO2复合活性物质能够进一步改善倍率性能的同时,循环性能也得到了很好的保证。当电压在1~3 V时,电流密度为1C倍率条件下,Li4Ti4.75Cu0.25O12/SnO2复合材料首次放电比容量高达202.55 m A·h/g。经过50次循环后,容量仍保持在202.51 m A·h/g,容量保持率高达99.98%。  相似文献   

13.
采用一步高温固相合成法制备橄榄石型锂离子电池正极材料LixFe(1-y)MoyPO4/C,着重研究了不同锂铁比和铁位钼元素掺杂对材料的充放电性能的影响.结果表明:当Li:Fe=1.03:1时,磷酸铁锂的放电比容量和充放电循环性能最佳,首次放电比容量最高为100.8mAh/g;在富锂基础上,Mo掺杂的浓度为Li1.033Mo0.01Fe0.97PO4/C时,材料表现出的电化学性能最好,所能达到的最大比容量为144.8mAh/g.  相似文献   

14.
采用草酸盐共沉淀法合成一系列的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2正极材料(0 ≤x ≤0.1),用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析合成产物的晶体结构及表面形貌;利用充放电仪测定了产物的电化学性能.结果表明,合成的Li(Ni1/3Co1/3Mn1/3)1-xCrxO2( x = 0.01,0.03,0.05,0.07) 均保持α-2NaFeO2 层状结构相,属于空间R3m点群.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2的电化学性能最佳,首次放电容量达158.6 mAh/g,在2.5~4.5 V区间30次循环后比容量衰竭率仅为3.92%.Li(Ni1/3Co1/3Mn1/3)0.95Cr0.05O2和Li(Ni1/3Co1/3Mn1/3)CrO2 的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

15.
采用溶胶-凝胶法制备了单斜结构的LiFeBO3/LBO复合材料(C2/c 空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的LiFeBO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6 mAh/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 mAh/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中LiFeBO3粒子之间的导电性明显得到改善.  相似文献   

16.
∶采用高温固相法合成LiFePO4锂离子电池正极材料,为提高LiFePO4材料的电化学性能,对其进行Ti4 掺杂改性.用XRD、SEM等测试手段对材料进行表征,并对以Li1-xTixFePO4(x=0,0.01,0.03,0.05)为正极的电池进行电化学性能测试.研究表明,掺杂过程中,掺杂离子能与LiFePO4形成晶格完整、有序的单相固溶体;少量的掺杂离子还可以提高材料的电导率和电化学性能,特别是大电流放电性能,其中Li0.97Ti0.03FePO4性能最优,以0.2C5放电,首次放电质量比容量为132.0 mA.h/g,50次循环后仍保持为131.5 mA.h/g.  相似文献   

17.
采用共沉淀的方法将含有一定比例的镍、钴、锰的金属醋酸盐溶液均匀混合,然后加入适当的沉淀剂Na2CO3制备前驱体Mn0.466Ni0.2Co0.2CO3,最后分别与不同锂源(Li2CO3、LiOH)混合煅烧得到富锂锰基Li1.133Mn0.466Ni0.2Co0.2O2正极材料。采用XRD和SEM分别对不同锂源制备的Li1.133Mn0.466Ni0.2Co0.2O2的结构和表面形貌进行表征,采用恒电流充放电和循环伏安法测试对不同锂源制备的Li1.133Mn0.466Ni0.2Co0.2O2的电化学性能进行测试。结果表明,以LiOH为锂源合成的样品在0.1C倍率下首次充、放电比容量分别为330.1mAh/g和218.6mAh/g,首次库仑效率为66.23%,在1C倍率内表现为优秀的稳定循环比容量特性,但是在2C以及2C以上高倍率循环稳定性不及以Li2CO3为锂源合成的样品性能。  相似文献   

18.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号