首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
谢树成  焦念志  汪品先 《科学通报》2022,(15):1597-1599
<正>海洋生物碳泵的地质演化是一个涉及地球系统各圈层相互作用的前沿科学难题,被列入了国家自然科学基金委员会和中国科学院联合资助的地球系统科学发展战略研究报告.如果说现代海洋生物碳泵的研究目的在于查明海洋储碳的途径和机制并服务于碳中和等目标的话,那么古海洋生物碳泵则更多地记录了它与一些重大地质事件的关系,包括古气候的冷暖变化、海洋缺氧事件、生物大灭绝事件等涉及地球整个表层系统乃至地球深部过程的一些重要环节.  相似文献   

2.
地球的构造包括地球的内部圈层构造与地壳的构造,是地球长期发展而成的必然结果.地球内部的圈层构造,当前只能依靠地球物理方法测得的信息加以合理的解释.例如,利用地震波在地球内传播上的变化,了解到地球内部有几个不连续面,其中最大的两个:莫霍面与古藤堡面,把地球内部分为地壳,地幔与地核. 但是,根据地震波速的变化,判断地球内部的物质成分的结论,是值得商榷的,因为地球内部高温高压下物质的物理性质,与地表情况下物质的物理性质,显然有很大的不同.从当代微观到客观自然科学的研究,地球内部的变化,可能不是物质的变化,而是物态的变化.  相似文献   

3.
生物地球物理学的产生与研究进展   总被引:5,自引:0,他引:5  
潘永信  朱日祥 《科学通报》2011,56(17):1335-1344
地球庞大的生物群落广泛地参与了岩石圈浅层、水圈和大气圈的物理和化学性质的改造过程. 认识生物圈及其与其他各圈层相互作用, 具有重要的地球系统科学意义.近年来, 随着生物地球科学的发展, 地球物理学方法和技术开始被应用于地质微生物改造作用、地球物理场对生物的影响等研究, 从而产生了生物地球物理学这一新的分支交叉学科. 本文评述了生物地球物理学的产生和一些最新研究进展, 旨在促进生物地球科学的发展与深化.  相似文献   

4.
郭正堂 《科学通报》2019,64(9):883-884
<正>可能源于科学自身的规律,地球科学的主旋律每隔二三十年就会发生一次大变革.二十世纪六七十年代以地球固体圈层运动规律为主攻对象的板块构造研究,导致板块理论的诞生,被认为是可与相对论、量子力学和分子生物学的产生相提并论的自然科学重大突破,也极大地推动了矿产资源和灾害等问题的解决.20世纪80年代开始的全球变化研究,是地球科学的另一主旋律.它主要以地  相似文献   

5.
人类活动引起的大气CO_2浓度增加正在加剧全球气候变化,因而全球碳循环和碳汇研究广受关注,它不仅是科学问题,也是关乎经济和社会发展的问题.碳汇研究涉及大气、陆地、海洋等各圈层.陆地向海洋输出的碳通量,与陆-气界面、海-气界面相当;但大部分陆地上形成的有机碳,在输入河流和近海时发生了改变,不仅无法形成碳汇,反而引发河口碳源效应.因此,系统开展陆海统筹协同研究,对于全面认识碳汇形成过程与调控机制十分必要.新近提出的"微型生物碳泵(microbial carbon pump,MCP)"理论为开展陆海统筹研发碳汇奠定了基础,可望以MCP为突破口,通过学科交叉研究和"产、学、研、政、用"结合,实现协同创新,为发展低碳经济提供科技支撑.  相似文献   

6.
正地球科学历经几百年的发展,在宏观和微观领域已经取得了重大进展.伴随着科技的巨大进步,地球科学正在向更宏观和更微观的两个明显的方向发展,即天体行星科学和纳米地球科学.纳米地球科学指以纳米科学与地球科学为依托,纳米技术与地学工具为手段,以地球物质为研究对象,对地球各圈层中已知或有待探知的纳米微粒和孔隙进行分析研究,从而揭示地学现象和过程中纳米尺度信  相似文献   

7.
碳汇研究是全球碳循环研究的重要内容.近年来,陆地水生生态系统的碳汇日益受到重视,被认为是"遗失碳汇"的重要组成部分.最新研究发现,碳酸盐风化碳汇占岩石风化碳汇的94%,因此,喀斯特地表水生生态系统的碳汇显得尤为重要.生物碳泵效应作为一种稳碳和固碳过程,是形成长期稳定碳酸盐风化碳汇的重要机制,是碳循环的重要环节.生物碳泵效应的核心控制元素是碳元素,该效应在富含溶解无机碳(DIC)的喀斯特地表水生生态系统中发挥着重要作用.目前生物碳泵效应的研究主要集中在两个方面:(1)内外源有机碳的区分是准确评价和计算生物碳泵效应碳汇的关键;(2)发现生物碳泵效应影响水环境指标和水质状况.未来,一方面应精确地对陆地水生生态系统碳汇量进行估算,研究不同气候和土地利用对碳汇量的影响;另一方面,揭示生物碳泵效应与水环境的相互作用机制.重点包括以下4个方面:(1)验证地表水生生态系统"元素比值控制假说";(2)生物碳泵效应对水体元素化学计量比的调控潜力;(3)形成不同碳汇机制(生物碳泵效应和富营养化机制)的根本原因;(4)生物碳泵效应通过物理-化学-生物耦合作用改善水环境的可能机制.最后,探究微生物碳泵效应应用于陆地水生生态系统的可能性.  相似文献   

8.
正习近平主席在2016年全国科技创新大会报告中指出:"向地球深部进军是我们必须解决的战略科技问题".在我国一批地球科学领域专家的建议下,"中国地球深部探测计划"被列入国家重大科技项目议程.深部地下生物圈是地球深部圈层的一部分,也是实现"深地"科技战略的重要内容之一.我国正在组织一批大陆科学深钻研究,其中就包括深地生物圈的探测和研究.另一方面,2016年国家自然科学基金委员会启动了水圈微生物重大研究计划.2017年科技部将微生物组计划列入日程.国际上,2016年美国国家微生物组计划启动.国际大洋钻探计划  相似文献   

9.
北冰洋是全球海洋碳循环研究的关键地区之一,其独特的地理位置决定了它是开展海陆统筹研究碳汇的一个绝佳的场所:地形相对封闭,边缘有世界上最大的陆架区,外围有广袤的陆地冻土层和大河输入.近年来,由于全球变暖、海冰消退、北极快速变化所引起的一系列大气、冰雪、海洋、陆地和生物等多圈层相互作用过程的改变,已经对北极地区碳的源、汇效应产生了深刻影响.这种变化不仅体现在由于陆地冻土圈变化所引起的甲烷和二氧化碳释放,而且,随之而来的海水层化、混合和环流变化,陆源有机碳和营养物质入海通量的增加,改变了海洋二氧化碳"物理泵"、"生物泵"和"微型生物碳泵"作用的强度、方式,以及海洋原有的海洋碳储库构成,很可能会对全球海陆碳源汇格局产生重要影响.本文主要从北极快速变化所引起的海洋生物泵过程和陆地碳输入的变化来讨论全球变暖对沉积碳埋藏的影响.  相似文献   

10.
碳循环是生命改造地球的最主要途径.海洋是地球上最大的活跃碳库,其储碳-释碳的异常波动对地球表层系统演化具有革命性影响.然而,中元古代无机碳同位素的相对稳定表明,地球碳循环达到了一个相对平衡的状态.因此,研究中元古代海洋中由微生物主导的碳循环对于我们认识地球宜居演化具有重要意义.本文从有机质来源、降解与富集等方面论证了中元古代海洋生物碳泵的主要地球化学过程,提出初始有机质来自以蓝细菌为主的多源生物,有机质降解有反硝化细菌、铁还原菌、硫酸盐还原菌、产甲烷菌等多种微生物参与.以中元古界下马岭组为例,定量分析了受初级生产水平和水体氧化还原程度控制的微生物降解作用及降解程度,估算14亿年前的海洋惰性可溶碳库增储可能达1000×1012~2500×1012t,仅燕辽盆地埋藏的有机碳就达6000×108t.最后,本文讨论了磷、铁供给对海洋碳循环的重要控制作用,提出未来开展高精度沉积地球化学解析和多元素循环精细建模研究的必要性.  相似文献   

11.
包括生物泵(biological pump, BP)和微型生物碳泵(microbial carbon pump, MCP)在内的海洋生物碳泵,是海洋生态系统通过碳循环调节地球环境变化的关键途径之一,对宜居地球起到增氧、减碳和降温等方面的作用.总体上,人们对地质时期海洋生物碳泵了解得很少,基本是粗线条的框架性认识.生物经历了从原核生物到藻类再到多细胞动物的演化,生态系统也经历了从扁平到立体的大革新.生物圈的这些变化导致海洋生物碳泵出现阶段性的演化.总体缺氧的太古宙海洋主要以单细胞微生物为主,合成有机质的微生物个体很难沉降,但能够在海洋里形成大量的惰性溶解有机碳(recalcitrant dissolved organic carbon, RDOC), MCP的贡献比较大,而BP相对较弱.藻类在元古宙起源而加入了生物碳泵,因细胞变大而增强了BP的作用,但MCP的作用也大,在晚新元古代形成大型溶解有机碳(dissolved organic carbon, DOC)库.在整体氧化的显生宙海洋,多细胞动物虽不能固碳但却加强了BP作用.生物的这些演化导致BP的效率不断提高,使得海洋对碳循环的缓冲作...  相似文献   

12.
孙伟家  魏勇 《科学通报》2023,(6):573-575
<正>地球、火星、月球等具有显著的圈层结构,这是其形成与演化的结果;圈层结构因而记录了它们的形成和演化中诸多地质过程和环境变迁,如岩浆洋冷却、壳幔分异和核幔分异,以及气候和宜居性环境演变等.地球的圈层结构可分为外部圈层(水圈、生物圈、大气圈)和内部圈层(地壳、地幔、地核),地球各圈层间存在大规模的物质循环和能量交换.地壳物质可以通过俯冲过程到达地幔甚至是核幔边界,而核幔边界的热物质则能以地幔柱形式上涌至地表.本文着重探讨火星与月球的浅表层和深部结构探测及其未来可能的考量.  相似文献   

13.
胡永云 《科学通报》2023,(23):2979-2982
<正>碳在地球各个圈层中的流动和转化过程称为地球的碳循环.地球的碳循环过程可以划分为表层和深部碳循环.两个碳循环过程密不可分,以不同的时间变率相互交织共同维持着地球上气候平衡.古气候指标数据显示,新生代以来大气中的二氧化碳浓度(pCO2)与地球表面温度之间存在着显著的正相关关系,即当二氧化碳浓度上升时,地球表面的温度也会随之升高[1,2](图1(a)).  相似文献   

14.
王久源 《科学通报》2023,(Z2):3724-3726
<正>技术创新是科学进步的重要推动力.纵观整个科学史,许多重大的科学发现和理论突破均以技术创新为驱动[1].例如,光学显微镜的发明揭示了细胞结构,从而催生了细胞生物学这一全新学科;粒子加速器的建设揭示了基本粒子的组成和运动规律,进而推动了高能物理学的发展.地球科学的发展同样受益于技术创新[2].举例来说,氧同位素温度计的开发为古温度的重建提供了可能,奠定了古气候研究的基础[3];近年来非传统稳定同位素指标的开发及运用,为研究地球各圈层演化提供了新的思路[2].近期,中国地球科学领域学者通过技术手段的创新[4],在古海洋磷循环这一前沿科学问题上取得了重要突破[5].该研究作为技术创新推动科学进步的又一案例,可为中国未来科研路径提供有益启示.  相似文献   

15.
郑洪波 《科学通报》2002,47(16):1280-1280
中国地球科学促进会(IPACES)和同济大学海洋与地球科学学院于2002年6月26~28日联合举办了“亚洲构造:从大陆到边缘海到岛弧”学术研讨会.会议主题是将亚洲和西太平洋作为一个统一的地球动力学系统,探讨其中具有全球意义的重要地质作用和事件,尤其是构造作用与全球变化的关系.会议特邀15位国内和15位国外知名地质和地球物理学家做主题报告,会议代表针对主题进行分组发言和交流汪品先院士的报告“中国深海研究的未来趋势”详细介绍了中国南海大洋钻探的成果,从瞄准科学目标和国家目标的视角,展望21世纪中国的海洋科学,尤其是深海研究的战略走向.中国科学院地质与地球物理研究所丁仲礼研究员介绍了中国在过去全球变化研究领域的最新进展.加洲大学的尹安教授、Woods Hole海洋研究所的林间博士、Michigan大学的张有学教授、Ehime大学的赵大鹏教授等15位IPACES成员分别就亚洲构造、太平洋边缘海的地质  相似文献   

16.
地球科学是从自然科学中分化出来的一门基础学科.传统地球科学以学科分化研究为主,主要分为两大主干学科,即地理学与地质学.地理学研究的对象是地球表层空间系统,包括人类活动和地理环境两大部分,其核心是人地关系地域系统.  相似文献   

17.
晚古生代大冰期(360~260 Ma)是地球上自动植物繁盛以来持续时间最长的冰期事件,记录了陆地自有高等植被和复杂陆地生态系统以来,唯一的一次从“冰室气候”向“温室气候”的转变.针对晚古生代大冰期的研究大多聚焦于全球碳循环以及冰川性海平面变化等方面,对大冰期的水循环研究相对较少,并且其主要基于气候模拟研究结果.随着单颗粒锆石精确测年技术的应用,高精度的综合地层框架使得冈瓦纳中高纬度地区冰川消长与低纬度地区沉积记录、生物多样性与演化及各种全球地球化学记录建立时序关系,为研究地球循环系统和反馈机制提供了基础条件.目前,对晚古生代大冰期碳同位素变化趋势已有较好认识,存在3次显著的碳同位素正漂事件,依次为杜内中期、巴什基尔早期和阿瑟尔早期,并且在时间上与冈瓦纳大陆识别的3次冰川高峰吻合.在宾夕法尼亚亚纪卡西莫夫末期发生了一次短暂的碳同位素负漂事件,引起显著的全球变暖和海洋缺氧.冰川体积与古热带区域气候动态在天文轨道周期尺度至1~8个百万年的冰期-间冰期时间尺度上都具有耦合关系.在各种时间尺度上,晚古生代大冰期地球表层系统各个圈层之间的反馈过程都非常复杂.因此,今后需在高精度综合地层框架下,开展...  相似文献   

18.
行星地球动力学与探寻资源和灾害预测   总被引:1,自引:0,他引:1  
行星地球动力学是研究行星的形成及其深化机制的科学。根据不同圈层间角动量交换的关系和作用机制,我们定性研究了最初地球极在大陆的形成,以及它们的分裂和向外核流体赤道辐合带的漂移。  相似文献   

19.
刘吉夫  陈颙 《自然杂志》2004,26(1):39-42
地球系统科学的提出,极大地改变了人们的研究和思维方式,同时也成为促生网格技术的重要因素之一.本文通过研究认为,地球系统科学和网格技术都是复杂的巨系统,二者的结合将是21世纪的重要事件.网格技术将为20世纪遗留下来的世界性地球科学难题(如全球变化、地震预报和宇宙起源等)提供最有力的技术支持.  相似文献   

20.
从我国到美国或阿根廷,乘船或乘飞机都要经过大弧线形的航线。为了加快速度,有人提出,要是把地球挖通了,做条直达的高速铁路或公路,那不就方便了吗!但是,你可知道地球地底下的构造?地球地底下的物质构造很有规律,大致可分为3个圈层。地表的薄薄的一层叫地壳,主要由岩石组成,厚度平均约是32km(在大陆底下厚为15km~80km;海洋下为2km~11km),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号