首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
本文运用解析函数边值问题和奇异积分方程理论研究复合材料环状垫圈对裂纹的影响,得到该问题的一般封闭解,并推导出应力强度因子公式。  相似文献   

2.
对各向异性复合材料板的周期性Ⅱ型裂纹尖端应力场进行了有关的力学分析,通过求解一类线性偏微分方程的边值问题,引入Westergaard应力函数、采用复变函数方法及待定系数法,给出在无穷远处受对称载荷τ作用下,周期性Ⅱ型裂纹尖端的应力强度因子,推出了各向异性复合材料板周期性Ⅱ型裂纹尖端附近应力场的理论计算公式。  相似文献   

3.
本文在文[1],[2],[3]的基础上,分别推出了当△<0(α=0)和J>0(α(?)0)时复合材料单层板Ⅱ型裂纹尖端附近应力场、应变场和位移场的计算公式.所得到的一系列结果对于复合材料平面断裂的理论研究和实际应用具有△一定的参考价值.  相似文献   

4.
把多保角变换复变函数理论和介配点最小二乘法相结合,提出了弹性力学中的计算复变函数法概念,并以此来计算含有任意多个椭圆孔有限大小复合材料层合板的应力场。  相似文献   

5.
利用碳纤维混凝土的良好导电性,首先通过对存在缺陷的复合材料——碳纤维混凝土试件施加较低的电压,使其产生焦耳热效应,在表面产生温差,再利用红外热像方法对其缺陷进行了无损检测,并根据数据进行了理论分析。实验结果表明:对电阻不同、裂纹缺陷深度相同的材料,小电阻材料所得的红外热像明显,温差大于大电阻材料且变化趋势比大电阻的明显;对电阻相同的大电阻材料,裂纹深度对温差有影响,但变化趋势不如电阻对温差的影响明显。实验结果为进一步研究红外检测复合材料缺陷提供了理论与实验依据。  相似文献   

6.
基于剪滞理论,提出一种称之为有限子层剪滞模型,研究了轴向拉伸复合材料正交叠层板的横向基体初始开裂问题;求得了横向裂纹扩展时的应力重分布;算出了相应的应变能释放率.根据能量准则,预测了此类复合材料的初始破坏应变,得到了与现有实验相符的结果.  相似文献   

7.
SiC颗粒增强铝基复合材料的宏观力学行为与其微观损伤机理密切相关,随温度的升高,材料力学性能明显下降,SiCp/A356复合材料表现出不同的细观损伤机理.文中对真空双搅拌方法制备的质量分数为20%的SiC颗粒增强铝基复合材料在室温和高温下的细观损伤机制进行了研究,在试样断口上,通过扫描电镜观察到了不同的裂纹萌生和扩展机制,根据不同温度下表现出的不同失效方法,归纳出了复合材料细观损伤的温度效应曲线.研究表明,在室温下复合材料的裂纹萌生以基体撕裂和颗粒断裂为主,高温下其裂纹萌生机制以颗粒脱离和基体撕裂为主.  相似文献   

8.
各向异性复合材料界面裂纹与界面下平行微裂纹干涉   总被引:1,自引:0,他引:1  
利用伪力-位错法对各向异性复合材料中界面裂纹与界面下平行于界面的微裂纹的干涉问题进行了研究,推导出了界面裂纹及界面下裂纹的基本解,将裂纹间的干涉问题化为一奇异分方程组,并借助Chebyshev多项式及Chebyshev数值积分法进行了求解。  相似文献   

9.
针对含有横向基体裂纹与贯穿型分层的复合材料层合板,建立了一个四子域的二维力学模型,利用一阶剪切变形理论(FSDT),并结合连续性条件和边界约束条件获得拉伸载荷作用下与裂纹密度和分层长度相关的分层裂纹张开口位移(DCOD)的理论解.运用COMSOL软件进行有限元建模计算,验证了理论解的精确性.利用获得的DCOD解,通过达西定律给出了氦气通过复合材料层合结构的渗透方程,最终确定了氦气经过结构的渗漏率.同时,采用经典的热压法制备了预埋一定裂纹密度与分层长度的T700碳纤维增强体/环氧树脂基复合材料层合结构,并利用一台高真空系统进行了渗漏实验.结果表明:在渗漏率保持小于1×10-5Pa·m3/s渗漏量水平上,理论值与实验结果相符合.本模型对于分析航天低温贮箱的渗漏规律具有重要参考价值.  相似文献   

10.
冯维明  陈芝 《山东科学》1997,10(2):46-49
本文热压烧结制备了ZrO2/TiN/Al2O3复合材料。用SEM、TEM观察了复合材料表面抛光组织、断口形貌、裂纹扩展和微观结构。研究了ZrO2含量对复合材料的力学性能的影响。当ZrO2含量增加到20wt%时,弯曲强度σf和断裂韧性KIC最高可达989MPa和10.84mMPa.m^1/2。实验结果及分析表明,ZrO2/TiN/Al2O3复合材料的增韧机理主要为ZrO2相变、裂纹偏转及TiN颗粒弥  相似文献   

11.
受弯复合材料板断裂分析的基于能量的Z准则   总被引:3,自引:0,他引:3  
本文对受弯正交复合材料板进行了理论断裂分析。采用了最近发展的基于能量的叫做“Z准则”的断裂准则。推导出了受弯复合材料板裂纹尖端附近的应力场、应变场、S-因子和Z-因子等的计算公式。这些公式对工程师们在复合材料结构的研究中进行断裂分析或实验研究是非常重要而有用的。  相似文献   

12.
 断裂准则在预测含裂纹材料发生破坏的时间、位置和裂纹扩展路径等方面具有重要意义。重点总结了线弹性材料中裂纹的断裂准则,阐述了应力强度因子准则、最大能量释放率准则、最大拉应力准则、最大拉应变准则、最小应变能密度准则等常用的断裂准则理论及其现状,以及这些准则的优点和局限性;基于常用断裂准则对应力分量和临界半径考虑不足,归纳了国内外学者提出的修正断裂准则,包括考虑T应力(非奇异项)和可变临界半径rc的影响。分析了断裂准则在岩石和混凝土脆性材料中的应用,针对基于断裂准则预测其破坏行为时存在的难题,建议将裂纹尖端应力场的高阶项T应力引入断裂准则,能更准确地预测裂纹的扩展路径与偏转角。  相似文献   

13.
基于实桥的缆索钢丝裂纹"先圆后扁"的扩展特征规律,提出了一种实用的拟合几何修正系数,将圆形前锋裂纹与直线形前锋裂纹的公式拟合,评估悬索桥主缆的带裂缝的钢丝断裂强度.该公式简单实用,计算精度令人满意,为缆索钢丝的剩余强度评估提供了快速途径.计算结果表明,断裂韧性方法比净截面理论更适合有裂缝钢丝的失效分析.  相似文献   

14.
为了研究裂隙岩体在水作用下的损伤断裂机制,考虑水产生的垂直裂纹面的静水压力和平行裂纹面的拖拽力,分析处于压剪和拉剪状态的单裂纹应力状态,推导出水作用下裂纹的应力强度因子.还定义基于断裂韧度的损伤变量,并将损伤变量引入Dugdale裂纹模型,推导出水损伤作用下压剪和拉剪应力状态下裂纹的应力强度因子.基于压剪条件下的断裂准则和最大周向应力理论,推导出压剪和拉剪应力状态下,考虑水损伤作用的裂隙岩体断裂准则.  相似文献   

15.
针对航空发动机压气机叶片掉角故障,提出了一种采用方形平板试件弯扭复合共振开展试验研究的方法,研究了试件非线性振动特性及振动疲劳试验方法。结果表明:叶片模拟试件存在十分复杂的“软硬化并存”非线性特征,对试件开展振动疲劳试验产生重要影响;由于非线性原因振幅具有明显的突跳现象,须使激振频率稍小于曲线峰值频率以保持振动状态的稳定;为了更精准地确定试件裂纹出现节点,在进行疲劳试验时针对试件制定裂纹判定标准;利用制定的裂纹判定标准可成功确定疲劳强度,验证了裂纹判定标准的有效性和可行性。  相似文献   

16.
裂纹顶端塑性区内方向应变能的裂纹扩展准则   总被引:1,自引:0,他引:1  
在应用断裂力学和塑性力学对裂纹顶端的分析基础上,提出了裂纹顶端塑性区内方向应变能的概念,并建立了基于此概念上的裂纹扩展准则,引入裂纹顶端临界扩展本征区概念,消除了应变能积分中的奇异性.与其它裂纹扩展准则的比较结果表明,在此基础上建立的裂纹扩展准则是合理可行的.  相似文献   

17.
对单向拉伸的斜裂纹,应用西多霍夫损伤模型和断裂力学耦合分析方法,推导出脆性材料斜裂纹损伤区与断裂区的边界方程,确定了脆性材料斜裂纹初始损伤区和断裂区的径向尺寸.提出了裂尖断裂区内径向应变能的概念,并建立了基于此概念上的裂纹扩展准则,即裂尖断裂区内径向最小应变能(RMSE)判据,从而确定了脆性材料斜裂纹在断裂区边界上的开裂角.最后确定了不同裂纹倾角起裂点的坐标.  相似文献   

18.
研究了混凝土等拉压强度不等的脆性材料在平面应力和平面应变情况下裂纹附近的塑性区的范围,并给出了相应的表达式;运用在一定外力作用下物体内等效应力作为断裂判据,推测含复合裂纹的脆性材料的裂纹扩展时的临界条件相扩展方向,计算了试件在6个不同裂纹角时断裂角的大小,其结果与最大周向正应力理论判据、最小应变能密度理论判据及实验结果比较,说明用最小等效应力作为含复合裂纹的脆性材料的裂纹断裂判据是可行的.  相似文献   

19.
复合型裂纹脆断主应变因子准则   总被引:5,自引:0,他引:5  
提出了一种复合型裂纹脆断的主应变因子准则。该准则为:1)定义垂直于裂纹扩展径向平面上的主应变ε1及极径r的组合量√2πrε1为主应变因子ε1^-,裂纹将沿主应变因子取得最大值的径向扩展;2)垂直于裂纹扩展径向平面上的主应变因子的方向与原裂纹面法线方向的夹角为扩展裂纹面的扭转角,当主应变因子达到临界值时裂纹将失稳扩展。由此导出了裂纹的开裂方向和裂纹面扭转角有断裂方程。Ⅰ-Ⅲ复合型裂纹断裂试验表明:主应变因子准则与试验结果基本相符,利用其进行断裂评定较安全。  相似文献   

20.
基于近年来在裂纹尖端塑性内应力应变分布、损伤和断裂的塑性消耗特征等方面的所做的研究工作,对传统断裂准则进行了改进,提出了一种考虑了构件几何及应力三轴性的新的断裂准则。由一系列几何尺寸的紧凑拉试验的验表明,理论预言与实验测量结果符合得委好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号