首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究巷道内瓦斯爆炸冲击波对巷道壁面结构的损伤破坏,利用ANSYS/LS-DYNA建立巷道瓦斯爆炸物理模型和数学模型,对掘进巷道瓦斯爆炸冲击波破坏特性进行数值模拟研究。结果表明:在巷道壁面边缘位置和中心位置超压测值较大,其壁面损伤相对更为严重;冲击波在巷道轴向壁面也会出现反射和叠加,导致整体超压峰值上下振荡波动;瓦斯爆炸后冲击波向开口方向传播,瓦斯区壁面受到的载荷最大,并逐渐向空气区加载扩散;随着爆炸冲击波能量衰减,而应力持续加载在壁面结构,压力集中对壁面结构施加静态破坏,最后超过其承受能力,导致巷道失稳破坏。研究结果可为优化巷道结构的设计提供理论参考。  相似文献   

2.
以大型消音除尘进气管道为研究对象,对其内部流场及结构场进行流固耦合数值分析。根据流体力学基本方程和流固耦合基本方程,应用CFX对管道内部流场进行模拟仿真,得出管道内压力、速度云图。将流场计算结果导入Workbench,利用流固耦合理论,得出耦合后管壁的压力分布和等效变形云图。仿真结果表明,空气流经管道时,从进风口处到出风口处,管道中压力水头转化成速度水头,压力减小,流速增大,出风口处产生负压;耦合后管壁存在微小变形,管壁四个角的变形明显大于壁面变形。  相似文献   

3.
为了研究煤矿井下瓦斯爆炸火焰在分岔巷道内的传播规律,自制45°分岔管道实验装置开展甲烷体积分数为9.5%的瓦斯爆炸火焰传播实验,用Fluent 16.0软件模拟分岔管道内瓦斯爆炸火焰传播过程。对比分析实验数据与模拟结果,得到分岔管道瓦斯爆炸火焰传播的变化规律。研究结果表明:1)分岔管道内瓦斯爆炸火焰在分岔处产生漩涡,加速管道内爆炸火焰湍流化,火焰冲击反射现象明显;2)分岔支管截面处爆炸火焰温度、传播速度、冲击波超压与离子电流峰值最大;3)瓦斯爆炸火焰传播的模拟结果与实验数据在数值上存在一定差异,但各参量总体变化趋势相同。研究结果为深入认识井下瓦斯爆炸传播机制和在巷道分岔处采取瓦斯爆炸火焰传播抑制措施提供一定参考。  相似文献   

4.
在实验室条件下进行管道内冲击波瓦斯爆炸过程模拟试验,通过模型仿真及分析,研究冲击波引起瓦斯爆炸的动力学特性。结果表明,冲击波速度和压力均经历了一个相似的变化过程,相同的瓦斯浓度范围,燃烧引起爆炸后的有关数据变化较冲击波引起爆炸后的数据变化小;管道长径比的增大,增大了冲击波的传播速度和瓦斯积聚区的压力、速度及温度值,使瓦斯积聚区的反应强度更高,更易于演变成爆炸;初始面上的变化,温度升高与燃烧速率为互长互消的关系,冲击波压力与燃烧速率为激励效应的关系;初始面之后的变化,瓦斯爆炸波传播呈渐强趋势。  相似文献   

5.
为研究埋地输气管道泄漏爆炸对并行管道的冲击破坏影响,采用TNT当量模型与数值模拟相结合的方法,分析不同并行间距下管道爆炸对并行管道的冲击破坏效应并进行验证.结果表明:随着并行间距增大,并行管道受爆炸冲击的影响分三个层次:大变形、持续小幅变形、无破坏效应;并行间距S3 m时,爆炸超压破坏和土壤挤压变形引起并行管道变形,产生破裂失效;并行间距4 mS6 m时,主要以土壤形变挤压为表现形式并破裂失效;并行间距S6 m时,形变应力主要源于土壤粘弹性变形且不出现破裂失效,但S8 m时并行管道会产生大变形.为保证埋地并行管道的稳定运行,其敷设间距推荐大于8 m.  相似文献   

6.
为研究瓦斯爆炸对矿井躲避硐室的影响,在封闭及开口管路中分别进行了瓦斯爆炸过程的数值模拟,运用ICEM软件建立了躲避硐室的物理模型,使用FLUENT软件对不同边界条件下的瓦斯爆炸压力、温度变化进行数值模拟,运用Origin软件对瓦斯爆炸过程中的压力、温度变化进行曲线拟合.结果表明:封闭条件下,躲避硐室中承受的最大爆炸压力和最高温度分别为0.61 MPa以及2 269 K;开口条件下,躲避硐室中承受的爆炸超压及最高温度分别降至12.39 k Pa和1 773 K.综合爆炸超压及爆炸引起的高温影响,躲避硐室应该尽可能地远离独头巷道.  相似文献   

7.
变截面管道对瓦斯爆炸特性影响的数值模拟   总被引:3,自引:2,他引:1  
以气体爆炸理论为基础,利用高精度的加权本质无振荡(WENO)格式对变截面管道中的瓦斯爆炸进行了数值模拟,探讨了变截面管道对瓦斯爆炸火焰传播的影响规律,得到了变截面管道造成瓦斯爆炸强度增大的结论. 在此基础上,分析了障碍物、壁面和三波结构对瓦斯二次爆炸的影响. 结果表明,经壁面反射后的激波和三波点的碰撞都能够诱导二次爆炸的产生. 这些结论为瓦斯爆炸的预防、安全评估和防火防爆提供了重要的理论依据.  相似文献   

8.
通过对深部巷道遭受冲击扰动的应力动态演化和围岩破坏的过程进行数值模拟,分析了锚杆与围岩的耦合体系承载冲击的能力,得到了深部锚杆支护巷道抵御动力冲击能力的规律。研究结果表明:水平方向的冲击应力波对巷道底脚和顶板破坏最严重,造成巷道断面挤压变形,同时引起冲击扰动壁面岩块受应力波叠加作用产生弹射;一定的锚杆支护结构在其承载范围能够抵御相应强度的动力冲击,但在更强冲击荷载下对巷道造成的破坏严重加剧,致使锚杆大量失效,并最终导致整个支护体系完全失去支护能力;冲击扰动对靠近扰动源壁面破坏严重,对其他壁面影响较小;原岩应力大小对冲击破坏影响明显,采深越大,冲击扰动造成围岩变形幅度越大,锚杆支护体系破坏更严重。研究结果为进一步开发深部巷道抗冲击破坏稳定性控制技术及制定方案提供了依据。  相似文献   

9.
熊宇轩  叶祖洋 《科学技术与工程》2023,23(26):11391-11397
为研究水平轴风力机在大气边界层近地面非定常来流作用下气动耦合特性,建立基于剪切应力传输(SST)湍流模型的计算流体力学(CFD)模型和静力结构模型。为模拟风轮在近地面的气动状态,通过单向流固耦合方法对流场均匀入流风速和旋转效应作用下不同工况进行数值耦合计算,求解风力机流场中的速度场、压力场、结构响应状态以及输出功率,分析对比流场不同方向风力机周围速度变化、表面压力分布、结构应力应变规律、整体变形情况和功率变化。结果表明:在均匀来流和旋转共同作用下,流速和压力主要沿风轮径向变化,沿叶片展向至叶尖速度逐渐增大;整机结构附近有明显的气流扰动变化;停机工况和旋转工况(考虑旋转效应)塔影效应干扰下叶片变形在上下风区波动较大;入流风速大小对风力机输出功率有显著影响。  相似文献   

10.
独头巷道内瓦斯运移规律数值模拟   总被引:3,自引:0,他引:3  
独头巷道内瓦斯异常出是引起煤矿井下瓦斯爆炸事故的主要原因之一.采用计算流体力学软件对独头端异常涌出后瓦斯在巷道中时空分布规律进行数值模拟研究.独头端的涌出速度采用幂函数的变化规律进行模拟.模拟过程监测了不同时刻巷道中心线瓦斯浓度分布情况以及巷道不同断面瓦斯浓度分布等值线图.模拟结果表明,巷道上部分瓦斯浓度比下部分瓦斯浓度大,瓦斯浓度沿巷道分为3个部分:先降低,后升高,然后又降低.涌出后一段时间瓦斯浓度降低部分非常短,整个瓦斯浓度是升高部分,且沿巷道长度方向基本呈直线升高.该研究对矿井瓦斯爆炸事故调查、通风风量调节、灾害预警以及应急救援具有一定的意义.  相似文献   

11.
水平管道内甲烷爆炸压力传播实验   总被引:1,自引:0,他引:1  
借助自行研制的瓦斯爆炸水平管道模拟巷道,通过实验研究低浓度瓦斯爆炸特征参数及爆炸压力在水平管道内的传播规律。结果表明:爆炸极限范围内的甲烷气体,在燃爆腔体内(点火段附近)爆炸超压随甲烷浓度的增大呈先增大后减小的趋势;甲烷体积分数为9.4%时,爆炸压力最大,为0.165670MPa,对应时间为76.8ms。在燃爆腔体一扩散管路内,气体爆炸压力峰值呈波动性变化;距点火段3600mm处、体积分数为9.4%的甲烷气体爆炸压力最大,爆炸超压为0.181228MPa。实验中甲烷爆炸超压的体积分数为9.4%。该研究为管道及煤矿巷道瓦斯爆炸事故分析提供了参考。  相似文献   

12.
不同雷诺数下90°弯管内流动特性的数值研究   总被引:2,自引:0,他引:2  
运用FLUENT软件中的RNGk-ε模型对不同Re下圆形截面90°弯管内空气流动进行了模拟,分析了管内压力分布、二次流动和壁面上压力系数的变化,研究了Re不同时对壁面压力系数的影响.发现在气流进入弯管段后,流场由于流体惯性和分子黏性的相互作用,各个截面上出现了对称的二次流涡对.随Re增大,流体对于管道壁面的压力增大,管内压力损失也在增大.管道壁面上的压力系数随Re的不同差别不大,Re越大,压力系数越小,并且管道外壁面变化比内壁面更加明显.湍流时压力系数沿程变化比层流明显很多,曲率的影响也要强于层流.  相似文献   

13.
采用ALE算法,使用ANSYS9.0数值模拟软件,选用30 kg TNT炸药为爆炸源(条形裸露药包),煤矿巷道截面积为6 m2(宽3m×高2m或宽2m×高3m),记录间隔时间At=5 ms,对爆炸冲击波通过巷道变点(夹角450)的状态和对应时刻的压力变化、冲击波压力峰值随巷道截面积和巷道轴向距离的变化及空气冲击波压力在巷道同一截面的不同位置的变化规律进行模拟.得出:爆炸冲击波在爆炸后的某一距离处以平面波的形式在直巷道内传播;随传播距离的增加冲击波压力逐渐衰减,当通过巷道转弯处时冲击波在转弯处反射叠加,在转弯的外壁面处出现加大的压力峰值,约为转弯处内侧压力的3倍.  相似文献   

14.
爆炸应力波对深埋巷道的作用效应分析   总被引:1,自引:0,他引:1  
运用工程分析软件ANSYS模拟几种常见形状的巷道结构在爆炸应力波作用下围岩的位移时间历程和Mises等效应力时间历程,进而分析这些不同形状巷道结构在爆炸应力波作用下的位移、振动、变形情况,得出在爆炸应力波作用下巷道结构易破坏的位置并给出防护对策。  相似文献   

15.
爆炸荷载作用下大型箱涵安全性的SPH-FEM耦合分析   总被引:1,自引:0,他引:1  
爆炸冲击荷载对地下结构物影响是工程界关注的重点问题.采用SPH与FEM耦合的数值分析技术,SPH法用于模拟爆破近域的土体大变形,FEM法用于模拟远场土体和结构物响应,研究了爆炸冲击荷载对大型输水箱涵安全性的影响,研究结果表明:SPH与FEM耦合分析技术可以满足计算精度与计算效率要求,计算结果较好地揭示了爆坑形成和冲击荷载的传播过程;不同爆炸位置下箱涵受力和变形存在较大差异,尤其是边墙中间位置,受土体变形流动影响,不同爆炸位置会引起明显的二次加载和拉压变化.  相似文献   

16.
钻孔抽放瓦斯流固耦合分析及数值模拟   总被引:5,自引:0,他引:5  
钻孔抽放瓦斯是中国利用和治理煤层瓦斯最主要的方法。随着开采深度的加深,地应力场等因素对瓦斯渗流的影响越来越明显。基于对煤层瓦斯一系列的假设的基础上,考虑了地应力、煤层瓦斯压力变化对煤体骨架产生的变形的影响,推导出了孔隙率、渗透率的表达式。运用多孔介质渗流的基本定理和流固耦合的基本理论得出了瓦斯流固耦合控制方程。运用多物理场耦合分析软件对钻孔抽放下的瓦斯渗流场进行了模拟分析。得到了钻孔抽放条件下瓦斯压力的分布、不同的埋藏深度下以及不同的钻孔参数(抽放负压、钻孔半径)对瓦斯渗流场的影响。分析模拟结果可以对现场  相似文献   

17.
随着矿井开采深度的增加,瓦斯压力对煤层开采过程中采场应力的影响越来越明显。根据煤层瓦斯渗流特性和固体介质变形基本理论,考虑煤层瓦斯压力的变化对煤岩体破裂的影响,建立了煤层开采过程中应力场和瓦斯运移场相耦合作用的数学模型。对含有不同煤层瓦斯含量和不同瓦斯压力的煤岩体,在开采过程中采场应力所发生的变化进行了数值模拟研究与分析。通过研究煤层开采过程中,在不同地应力和煤层瓦斯压力的影响,得出采场应力的变化规律。其结果对于矿井煤层正常开采时,解决采场应力的变化所引起冲击地压灾害事故隐患的技术性问题等提供可靠的理论指导。  相似文献   

18.
在实验研究的基础上,分析了结构异常管路对瓦斯爆炸传播特性的重要影响。研究结果表明,在拐弯处的瓦斯爆炸传播过程是一个压力波、火焰、复杂流动场相互作用的过程,压力波超压、火焰传播速度迅速增大,对拐弯处的壁面破坏特别严重。弯管角度对瓦斯爆炸传播特性有很大的影响,瓦斯爆炸通过不同角度的弯管后,火焰传播速度和压力波超压值都有不同程度的变化。管道拐弯既增加了燃烧区的湍流度而加速燃烧产生能量以推动加速传播,同时也因为拐弯而增大了总阻力和热量向壁面的传递,弯角处膨胀波也会抑制瓦斯爆炸的传播。管道拐弯对瓦斯爆炸传播特性的影响取决于抑制因素和激励因素的综合作用。  相似文献   

19.
随着煤矿逐渐进入深部开采,在深部高地应力和瓦斯压力开采条件下,冲击地压的触发机制也将发生变化。首先,根据采掘工作面前方的应力和瓦斯压力分布状况,并结合冲击煤体顶部存在粉碎煤的特点,构建出了高地应力和瓦斯压力条件下的冲击煤体受力物理模型;然后,对冲击煤体进行了受力分析,从理论上推导出了冲击能量计算公式。研究结果显示,在高地应力和瓦斯压力开采件下,冲击煤体与顶板之间的相对运动属于滚动摩擦,而与底板之间的相对运动则属于滑动摩擦;冲击能量随冲击深度呈指数规律增长。因此,高地应力与瓦斯压力条件下的煤岩体弹性变形能和瓦斯膨胀能瞬间释放,不仅增加了冲击地压发生的能量和动力,而且降低了阻力;增加卸压带宽带防治冲击地压的作用机理在于提高冲击地压发生的能耗条件。  相似文献   

20.
基于弹塑性力学理论,采用有限元分析方法,建立了岩土坍塌作用下埋地集输管道分析模型,研究了岩石坍塌作用下不同因素对埋地集输管道应力影响规律.结果表明:冲击载荷随石块边长的增加呈指数形式上升,正方体边长改变1.4 m时,冲击载荷可改变22.4 MPa.运行压力、温度、管道铺设坡度对管道壁面应力影响较小,而冲击载荷、腐蚀是埋地集输管道安全的主要影响因素.当冲击载荷大于10.5 MPa时,管道进入塑性变形区.岩石坍塌冲击载荷较大时,管道壁面最大等效应力随着管道径厚比的增加而减少.当径厚比改变了3.8,管道壁面最大等效应力可减小44 MPa;当岩石坍塌冲击载荷较小时,管道壁面最大等效应力出现极小值点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号